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Abstract

Due to the powerful capability to gather the information of
neighborhood nodes, Graph Convolutional Network (GCN)
has become a widely explored hotspot in recent years. As a
well-established extension, Graph AutoEncoder (GAE) suc-
ceeds in mining underlying node representations via eval-
uating the quality of adjacency matrix reconstruction from
learned features. However, limited works on GAE were de-
voted to leveraging both semantic and topological graphs,
and they only indirectly extracted the relationships between
graphs via weights shared by features. To better capture the
connections between nodes from these two types of graphs,
this paper proposes a graph neural network dubbed Dual
Low-Rank Graph AutoEncoder (DLR-GAE), which takes
both semantic and topological homophily into consideration.
Differing from prior works that share common weights be-
tween GCNs, the presented DLR-GAE conducts sustained
exploration of low-rank information between two distinct
graphs, and reconstructs adjacency matrices from learned la-
tent factors and embeddings. In order to obtain valid adja-
cency matrices that meet certain conditions, we design some
surrogates and projections to restrict the learned factor ma-
trix. We compare the proposed model with state-of-the-art
methods on several datasets, which demonstrates the superior
accuracy of DLR-GAE in semi-supervised classification.

Introduction
Graph Convolutional Network (GCN) (Kipf and Welling
2017) is a crucial technique of graph learning and has been
universally applied to a multitude of machine learning tasks
(Kang et al. 2020; Bian et al. 2020; Liu et al. 2022; Feng
et al. 2021), including node classification, computer vision
and social analysis. Originated from GCN, Graph AutoEn-
coder (GAE) aims to explore underlying node representa-
tions from topological networks. It learns low-dimensional
node embeddings via graph convolutional layers, and super-
vises the learned latent features via link connections stored
in the adjacency matrix. A multitude of researchers have put
emphases on the study and applications of GAE (Sánchez-
Martı́n, Rateike, and Valera 2022; Jing, Xu, and Li 2022; Liu
et al. 2019).
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Figure 1: Comparison of GCN exploring semantic and topo-
logical graphs. Subfigure (a) depicts prior works that built
parallel GCNs with weight sharing to learn two distinct
node embeddings. Subfigure (b) briefly elaborates on the
proposed model. Instead, it considers the factor sharing of
reconstructed adjacency matrices to explore a common and
direct correlation between two types of graphs.

As a supplement to the natural topological structure of
nodes, extracting semantic node connections from the fea-
ture space is beneficial to more dexterous embedding explo-
ration, which has been investigated by some state-of-the-art
works (Wang et al. 2020; Zhang et al. 2021). The utiliza-
tion of feature graphs is helpful to capturing additional ho-
mophily between vertices and latent semantics in nodes. As
described in Figure 1 (a), most of the prior frameworks built
parallel networks to manipulate topological and semantic
node relationships simultaneously. These models often fed
different adjacency matrices to two networks respectively,
and shared convolutional weights between them. Eventu-
ally, the unified node representation is attained via a linear
weighted combination or an attention mechanism.

Nevertheless, these models only explore the latent con-
sistency of learned features through shared convolutional
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weights. As a matter of fact, compared to indirect relation-
ships between learned features, the correlation between two
types of adjacency matrices is often stronger. This is be-
cause that semantic node connections extracted from fea-
tures not only complement the missing links in topologi-
cal graphs, but also preserve similar characteristics to the
topological structure. It motivates us to develop parallel net-
works that learn underlying common factors between two
types of graphs, as shown in Figure 1 (b). We attempt to
study the shared latent factors instead of shared weights
for GCN, expecting that more dexterous and effective fea-
tures can be extracted by two networks, and the consis-
tency of two graphs can be represented by a shared latent
factor matrix. Accordingly, in this paper, we come up with
a Dual Low-Rank Graph AutoEncoder (DLR-GAE) frame-
work, which explores common low-rank factors between re-
constructed semantic adjacency matrix and topological adja-
cency matrix in a factorization-based method. Derived from
a Schatten-p-norm-based low-rank matrix factorization opti-
mization problem, a differentiable loss function is proposed
to approximately minimize the optimization objective. For
the pursuit of achieving valid adjacency matrix reconstruc-
tion, we add constraints to the learned latent factor matrix,
and develop some surrogates and projections to ensure that
the matrix satisfies certain properties such as symmetry and
non-negativity. In short, the main contributions of this paper
are listed as below:

1) A dual low-rank GAE addressing semantic and topo-
logical graphs is constructed, whose decoders conduct adja-
cency matrix reconstruction via optimizing the surrogate of
Schatten-p norm w.r.t. a shared latent factor matrix.

2) For the sake of theoretical strictness, several surrogates
and projections are designed to guarantee the validity of the
factor matrix, which enables DLR-GAE to reconstruct valid
adjacency matrices and promotes the learning performance.

3) Comprehensive experiments on several graph datasets
are conducted to verify the superiority of the proposed DLR-
GAE, which reveal that the proposed model outperforms
state-of-the-art graph-based models.

Related Works
Graph Autoencoder
We first review the basic architecture of a GAE, which is
formulated as

Z = FGCN

(
X, Ã

∣∣∣ {W(l)
}L

l=1

)
(1)

Â = sigmoid
(
ZZT

)
, (2)

where X is the node feature. In particular, each layer of GCN
is formulated as

H(l) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l−1)W(l)

)
, (3)

where Ã = A + I is the self-connected adjacency matrix,
σ(·) is the activation function, and [D̃]ii =

∑
j [Ã]ij . Dif-

ferent from a common autoencoder, GAE encodes node fea-
tures to low-dimensional embeddings via GCN, and decodes
the learned representation via an inner-product. GAE-based

models have been extensively applied to learning underlying
node representations. For example, a variational GAE was
utilized to approximate the interventional and counterfactual
distributions on various structural causal models (Kipf and
Welling 2016; Sánchez-Martı́n, Rateike, and Valera 2022).
A graph-based autoencoder framework was proposed to per-
form the semi-supervised classification tasks, which trained
a matrix completion target and a classifier simultaneously
(Kang et al. 2020). A graph masked autoencoder was pre-
sented to reduce the dependence on supervision information
via a self-supervised pre-training strategy with untrained ar-
chitectures (Jing, Xu, and Li 2022).

Learning from Semantic and Topological Graphs
Several recent studies have attempted to learn a unified node
representation from both semantic and topological graphs.
An adaptive multi-channel GCN was proposed for learning
common features from feature space and topology space si-
multaneously, which used the attention mechanism to obtain
a weighted embedding (Wang et al. 2020). (Wu et al. 2019)
proved that topological connections could be regarded as the
low-pass filtering on node features when the node embed-
ding propagated over the topology network. (Gao, Pei, and
Huang 2019) presented a conditional random field layer to
preserve the connective between various vertices. The node
homophily learned from both structural and feature simi-
larities was exploited to explore potential neighbor connec-
tions among nodes (Zhang et al. 2021). Some of these ex-
isting works constructed parallel graph neural networks to
manipulate two graphs simultaneously, sharing the weights
of GCNs. This may be restrictive because it is an indirect
exploration of relationships between feature space, rather
than a direct extraction of the common information between
graphs. Instead, this paper considers mining underlying cor-
relations between two kinds of graphs via a factor matrix, on
the basis of which we reconstruct low-rank adjacency ma-
trices in a matrix factorization way to implicitly study the
shared latent information.

The Proposed Method
In this section, we elaborate on the proposed model. Given a
graph G = (V, E) with n nodes, the natural topological node
relationships are described by a binary adjacency matrix
AT ∈ Rn×n, and the semantic node connections obtained
from the feature space are stored in the adjacency matrix
AS ∈ Rn×n. Node features are represented by X ∈ Rn×m.
The proposed framework aims to explore a unified node em-
bedding from topological and feature space via low-rank-
factor-shared GAEs. A detailed illustration of the proposed
DLR-GAE is shown in Figure 2.

GAE with Low-Rank Reconstruction
In pursuit of supervising the learned node embeddings, we
reconstruct the adjacency matrix via a low-rank matrix fac-
torization target. The low-rank property is beneficial to the
adjacency matrix reconstruction, because nodes often have
similar connective patterns and the information in the sim-
ilarity matrix is generally redundant. In order to optimize
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Figure 2: The framework of the proposed DLR-GAE, which is a parallel graph neural network learning node embeddings from
semantic and topological graphs simultaneously.

the low-rank reconstruction with node embeddings, we first
review a PCA-like optimization problem, defined as:

min
Z,U

∥∥A− ZUT
∥∥2
F
+ g(U), (4)

where A is a known adjacency matrix, Z is the node em-
bedding matrix and U is the low-dimensional latent factor
matrix. g(U) is a low-rank regularization w.r.t. U. The ob-
jective defined in Eq. (4) is restrictive, because the adjacency
matrix reconstruction Â = ZUT is asymmetric, which is
problematic for a graph convolutional operation. In addition,
the low-dimensional mapping ZUT ignores the fact that the
same row and column of A depicts the node relationships of
the same vertex.

In pursuit of addressing the aforementioned issues, we
first introduce an asymmetric reconstruction of the adja-
cency matrix, whose objective can be written as:

min
Z,U

∥∥A− ZUZT
∥∥2
F
+ g(U), (5)

where ZUZT is the asymmetric matrix. The factor model
defined in Eq. (5) maps the node features onto the Rd space
and encodes the incoming and outgoing connectivity of each
node. Namely, the reconstruction Â = ZUZT also consid-
ers the connections among distinct nodes. Because A is gen-
erally binary and sparse, we rewrite the objective as

min
Z,U

Lrec (A,Z,U) + g(U), (6)

where Lrec (A,Z,U) is the log likelihood reconstruction
error defined as

Lrec (A,Z,U) = − 1

κ

∑
i,j

Aij log
(
Âij

)
, (7)

where Âij =
[
ZUZT

]
ij

and κ is the number of non-zero
entries in A. It is noted that Eq. (7) only evaluates the recon-
struction performance of existing node connections in A. In

this paper, we further consider a multi-factor model for the
adjacency matrix reconstruction. Factorizing U into numer-
ous low-rank matrices U1 ∈ Rd×d1 , Ui ∈ Rdi−1×di , i =
2, · · · , I − 1, UI ∈ RdI−1×d, we have

min
Z,{Ui}I

i=1

Lrec (A,Z,U) + g

(
n∏

i=1

Ui

)
. (8)

Because d ≪ n, Z
∏n

i=1 UiZ
T can be regarded as a low-

rank reconstruction of A. Owing to the low-rank constraint,
we adopt Schatten-p norm to regularize U =

∏n
i=1 Ui, i.e.,

∥U∥Sp
= (

min{m,n}∑
i=1

σi(U)p)
1
p =

(
Tr((UTU)

p
2 )
) 1

p

, (9)

where the indicator p satisfies 0 < p < ∞. Schatten-p norm
is an extensively used unitarily invariant norm. Particularly,
it becomes the nuclear norm or trace norm when p = 1.
Exactly, it is the rank norm when p = 0. For a matrix-
factorization-based Schatten-p norm, we have the following
lemma (Xu, Lin, and Zha 2017; Chen et al. 2023).
Lemma 1. Given I factors Ui, i = 1, · · · , I , where U1 ∈
Rd×d1 , Ui ∈ Rdi−1×di , i = 2, · · · , I − 1, UI ∈ RdI−1×d

with rank(U) = r ≤ min{di, i = 1, · · · , I}, we have

1

p
∥U∥pSp

= min
Ui:U=

∏I
i=1 Ui

I∑
i=1

1

pi
∥Ui∥pi

Spi
, (10)

where any pi > 0 satisfies 1
p =

∑I
i=1

1
pi

.
Consequently, we first transform Eq. (8) into

min
Z,{Ui}I

i=1

Lrec (A,Z,U) +
1

pi

I∑
i=1

∥Ui∥pi

Spi
. (11)

In particular, setting pi = 2 for i = 1, · · · , I , Eq. (11) be-
comes an objective with Frobenius norm, i.e.,

min
Z,{Ui}I

i=1

Lrec (A,Z,U) +
I

2

I∑
i=1

∥Ui∥2F . (12)
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According to Lemma 1, it is equivalent to

min
Z,Ui:U=

∏I
i=1 Ui

Lrec (A,Z,U) +
I

2
∥U∥pSp

, (13)

which indicates that p = 2
I for the low-rank regularization

w.r.t. U =
∏I

i=1 Ui. Therefore, when I → ∞, I
2∥U∥pSp

is close to rank norm owing to p → 0. In order to obtain a
symmetric reconstruction of the adjacency matrix A, we use
Us = UUT which is symmetric to replace U in Eq. (13).
Namely, Eq. (13) is transformed into

min
Z,Ui:U=

∏I
i=1 Ui

Lrec (A,Z,Us) + Lsp (Us) , (14)

where Us = UUT . We define the Schatten-p norm surro-
gate w.r.t. Us as

Lsp (Us) =
I

2

I∑
i=1

∥Ui∥2F (15)

with p = 2
I . It is exactly I

2∥U∥pSp
, which is equivalent to

I
2∥Us∥pSp

. We have the following theorem for this surrogate.

Theorem 1. For any factor matrix U ∈ Rd×d, the opti-
mization of I

2∥U∥pSp
is equivalent to that of I

2∥Us∥pSp
when

p = 2
I , where Us = UUT .

Proof. Due to Lemma 1, for any U ∈ Rd×d, we have

min
U

1

p

∥∥UUT
∥∥p
Sp

= min
U

{
1

p1
∥U∥p1

Sp1
+

1

p2
∥UT ∥p2

Sp2

}
.

(16)
When p1 = p2 = p̂, it leads to

min
U

1

p

∥∥UUT
∥∥p
Sp

= min
U

2

p̂
∥U∥p̂Sp̂

, (17)

attributed to ∥U∥p̂Sp̂
= ∥UT ∥p̂Sp̂

. Letting 1
p = 2

p̂ , we have
p̂ = 2p. Therefore, the equation

min
U

I

2
∥UUT ∥pSp

= min
U

I

2
∥U∥pSp

(18)

holds when p̂ = 2p = 4
I . That is,

min
U:Us=UUT

I

2
∥Us∥pSp

= min
U

I

2
∥U∥pSp

, (19)

when p = 2
I . This completes the proof.

Consequently, we can adopt the surrogate Us = UUT

to guarantee the symmetry of the estimated Â = ZUsZ
T .

Eventually, we define the formulation of a low-rank GAE
FLRGAE

(
X, Ã|Us,

{
W(l)

}L
l=1

)
as:

Z = FGCN

(
X, Ã

∣∣∣ {W(l)
}L

l=1

)
, (20)

U =
I∏

i=1

Ui, Us = UUT , (21)

Â = sigmoid
(
ẐUsẐ

T
)
, (22)

where the renormalized Ẑ = softmax(Z). Actually, if Us =
I, it is a similar structure of GAE.

Dual Low-Rank GAE
In light of previous analysis, in this subsection, we further
propose a dual low-rank GAE to explore semantic and topo-
logical node relationships simultaneously. The topological
graph is obtained from the existing node connections, while
the semantic graph can be estimated by measuring feature
distances among nodes. Specifically, we can use the cosine
similarity to measure the correlations among nodes and gen-
erate a semantic graph through the KNN method that keeps
the most important node connections.

In real-world datasets, semantic graphs often have tight
connections to topological graphs, because they describe the
connections within the same node set. In light of this, the se-
mantic and topological networks should have similar seman-
tic information, which is stored in the latent factor matrix
factorized from adjacency matrices. Accordingly, the pro-
posed framework consists of two parallel GAEs, sharing the
same factor loading matrix Us. Namely,

ZT , ÂT = FLRGAE

(
X, ÃT

∣∣∣Us,
{
W

(l)
T

}L

l=1

)
, (23)

ZS , ÂS = FLRGAE

(
X, ÃS

∣∣∣Us,
{
W

(l)
S

}L

l=1

)
. (24)

For the sake of better interpretability, we add some con-
straints to Us. Accordingly, the minimization objective of
DLR-GAE becomes

L (ZT ,ZS ,A,Us,Y)

=Lce (ZT ,ZS ,Y)

+αLrec (A,ZT ,Us) + (1− α)Lrec (A,ZS ,Us)

+γLsp (Us) ,

s.t. Us1 = 1, UT
s 1 = 1, [Us]ij > 0,

(25)

where γ is a hyperparameter to adjust the influence of
Schatten-p norm. It is reasonable to put nonnegative con-
straint to

∏n
i=1 Ui, because entries in A is generally non-

negative. We require that Us1 = 1 and UT
s 1 = 1

for symmetry reconstruction and weighted node represen-
tations. Herein, the semi-supervised cross-entropy error
Lce (ZT ,ZS ,Y) is defined as

Lce (ZT ,ZS ,Y) =

−
∑
i∈Ω

c∑
j=1

Yij ln [αZT + (1− α)ZS ]ij ,
(26)

where Ω is the set containing nodes with semi-supervised
information, and α is the trade-off parameter balancing the
impact of semantic and topological graphs. In pursuit of sat-
isfying constraints in Eq. (25), we can apply the differen-
tiable Dykstra’s projection algorithm (Zeng et al. 2019) to
map Us onto three feasible sets individually, i.e.,

P1 (Us) = ReLU(Us), (27)

P2 (Us) = Us −
1

d
(Us1− 1)1T , (28)

P3 (Us) = Us −
1

d
1
(
1TUs − 1T

)
. (29)
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Algorithm 1: Dual Low-Rank Graph AutoEncoder
Input: Node features X ∈ Rn×m, topological adjacency
matrix AT ∈ Rn×n, semantic adjacency matrix AS ∈
Rn×n, numbers of factor matrices I , ground truth Y ∈
Rn×c, hyperparameters α and γ.
Output: Node embedding Z.

1: Initialize trainable weights {W(l)
T }Ll=1, {W(l)

S }Ll=1, fac-
tor matrices {Ui}Ii=1;

2: while L (ZT ,ZS ,A,Us,Y) does not converge or the
model does not meet the early-stop condition do

3: Compute the outputs ZT , ÂT , ZS , ÂS , Us of DLR-
GAE via Eqs. (20) - (22);

4: Conduct the softmax operation on Us via Eq. (30);
5: Iteratively project the low-rank latent factor matrix

Us onto the feasible set via Eqs. (27) - (29);
6: Calculate the loss value L (ZT ,ZS ,A,Us,Y) via

Eqs. (7), (15), (26) and (25);
7: Update trainable weights {W(l)

T }Ll=1, {W(l)
S }Ll=1 and

factor matrices {Ui}Ii=1 with back propagation;
8: end while
9: Obtain the unified embedding Z = αZT + (1− α)ZS .

10: return Node embedding Z.

Nevertheless, Dykstra’s projection is an iterative algorithm
that stops when the current solution meets the condition, re-
quiring a large number of iterations for convergence. This is
not acceptable during network training, especially when d is
large. In order to accelerate the convergence speed of Eqs.
(27) - (29), a softmax initialization is adopted to obtain a Us

that approximately satisfies constraints. Namely,

P0 (Us) =
softmaxdim=0(Us) + softmaxdim=1(Us)

2
,

(30)

which makes the cumulative sum of entries in each column
or row is close to 1. With Eq. (30), we only need to conduct
the three-step projection several times at each training epoch
to get the desired Us.

Training Algorithm

The training progress of DLR-GAE is illustrated in Algo-
rithm 1. The whole framework first performs the forward
propagation of DLR-GAE, and then projects the learned Us

via the iterative projection method. Eventually, we calculate
the loss values and update all trainable weights with back
propagation. Supposing that a 2-layer GCN with trainable
weights W(1) ∈ Rm×d and W(2) ∈ Rd×c is adopted,
the computational complexity of encoders is linearly re-
lated to the number of edges |E|, i.e., O(|E|mdc), where c
is the number of classes. The matrix reconstruction proce-
dure takes about O(n2c). Consequently, the overall compu-
tational complexity of DLR-GAE is O(|E|mdc+ n2c).

Datasets # Nodes # Edges # Features # Classes

Citeseer 3,327 4,732 3,703 6
CoraFull 19,793 63,421 8,710 70
BlogCatalog 5,196 171,743 8,189 6
ACM 3,025 13,128 1,870 3
Flickr 7,575 239,738 12,047 9
UAI 3,067 28,311 4,973 19

Table 1: A brief statistics of adopted graph datasets.

Experimental Analysis
Datasets and Compared Methods
In order to validate the effectiveness of DLR-GAE, we
utilize several widely used graph datasets for the perfor-
mance evaluation, including Citeseer, CoraFull, BlogCata-
log, ACM, Flickr and UAI. These datasets describe distinct
types of node connections, e.g., paper citations, social rela-
tionships and web linkages. A statistical summary of these
datasets is illustrated in Table 1.

We compare the proposed DLR-GAE with various graph-
based methods. Apart from classical baselines (MLP and
Chebyshev (Defferrard, Bresson, and Vandergheynst 2016)),
other state-of-the-art methods are: GCN (Kipf and Welling
2017), GAE (Kipf and Welling 2016), GraphSAGE (Hamil-
ton, Ying, and Leskovec 2017), GAT (Velickovic et al.
2018), JK-Net (Xu et al. 2018), SGC (Wu et al. 2019),
APPNP (Klicpera, Bojchevski, and Günnemann 2019),
ClusterGCN (Chiang et al. 2019), ScatteringGCN (Min,
Wenkel, and Wolf 2020), SSGC (Zhu and Koniusz 2021),
AdaGCN (Sun, Zhu, and Lin 2021) and AMGCN (Wang
et al. 2020). In particular, AMGCN also considers both se-
mantic and topological node relationships.

Experimental Settings
In order to prevent undesired influence raised by the data dis-
tribution, in the following experiments, we shuffle datasets
and randomly select 20 labeled samples per class for train-
ing, 500 samples for validation and 1,000 samples for test-
ing. In particular, because some categories of CoraFull do
not have enough samples, we randomly select a fixed ra-
tio of samples from each category, resulting in about 1,400
training samples from 70 classes. In pursuit of providing a
fair test bed, we list some common hyperparameters used
in experiments. Learning rates of all compared frameworks
are fixed as 0.01. For all GNN-based methods, the number
of hidden units at each layer is fixed as 16 and a 2-layer
GCN is adopted. As for DLR-GAE, we keep consistent with
compared GCN-based models, setting the number of hidden
units as 16 and applying parallel two-layer GCNs. The learn-
ing rate of DLR-GAE is also fixed as 0.01 and the weight
decay is 5× 10−4. The choice of k ranges in [5, 10, · · · , 50]
when constructing semantic graphs via KNN algorithm. The
number of latent factors I is fixed as 5.

Experimental Results
Performance Comparison. The semi-supervised classifica-
tion comparison between DLR-GAE and compared state-
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Methods / Datasets Citeseer CoraFull BlogCatalog ACM Flickr UAI

MLP 0.366 0.051 0.646 0.812 0.431 0.188
Chebyshev 0.693 0.534 0.357 0.829 0.304 0.215

GCN 0.697 0.567 0.697 0.875 0.414 0.498
GAE 0.719 0.576 0.715 0.899 0.477 0.387
GraphSAGE 0.620 0.521 0.525 0.872 0.286 0.483
GAT 0.683 0.571 0.681 0.889 0.429 0.597
JK-Net 0.684 0.568 0.725 0.892 0.547 0.494
SGC 0.697 0.583 0.716 0.887 0.410 0.571
APPNP 0.698 0.576 0.813 0.885 0.477 0.538
ClusterGCN 0.681 0.576 0.731 0.893 0.483 0.525
ScatteringGCN 0.679 0.519 0.690 0.890 0.419 0.364
SSGC 0.673 0.572 0.760 0.889 0.478 0.523
AdaGCN 0.663 0.552 0.800 0.894 0.552 0.588
AMGCN 0.719 0.584 0.858 0.899 0.756 0.643

DLR-GAE 0.724 0.590 0.901 0.924 0.810 0.658

Table 2: Semi-supervised classification accuracy comparison on six graph datasets.

Methods / Datasets Flickr UAI

GAE (topological graph) 0.477 0.497
GAE (semantic graph) 0.757 0.614
DLR-GAE w/o Us 0.741 0.630
DLR-GAE w/o Lsp(Us) 0.783 0.636
DLR-GAE w/o constraints in Eq. (25) 0.562 0.632
DLR-GAE 0.810 0.658

Table 3: Ablation study (accuracy) of DLR-GAE.

of-the-art models is shown in Table 2. DLR-GAE gains
the optimal classification accuracy on all datasets. It not
only achieves favorable performance compared with base-
line GCN methods (e.g., GCN and GAE), but also obtains
higher accuracy than other latest works. This can be at-
tributed to the more dexterous information propagation over
two types of graphs. In particular, DLR-GAE outperforms
AMGCN which also endeavors to explore node embeddings
from topology and feature spaces. This indicates that the
strategy of learning shared latent factor for reconstruction
adjacency matrix attains remarkable performance improve-
ment, compared with that learns shared weights of GCN.

Ablation Study. To verify the effectiveness of each model
component, the ablation study of DLR-GAE is conducted, as
demonstrated in Table 3. We investigate the performance of
GAE with a topological or a semantic graph, and also check
the classification accuracy of DLR-GAE without some es-
sential components. From this table, we can draw the fol-
lowing conclusions. First of all, DLR-GAE gains the opti-
mal performance on these datasets, which is more signifi-
cant on Flickr. Second, DLR-GAE that utilizes both topo-
logical and semantic graphs obtains encouraging accuracy
increment, compared with GAE that only adopts either topo-
logical graph or semantic graph. This validates that the co-
utilization of topological relationship and feature homophily

Figure 3: Impact of neighbor number k when constructing
semantic graphs from node features.

facilitates the node embedding learning. Third, we test the
performance of DLR-GAE without some components, find-
ing that the learned latent factor matrix Us, low-rank loss
Lsp(Us), and the constraints w.r.t. Us promote the accuracy
of the model. It is noted that DLR-GAE without constraints
in Eq. (25) has poor performance on Flickr, which indicates
that the validity of Us is essential to DLR-GAE.

Parameter Sensitivity. In this subsection, we investigate
the impact of hyperparameters (k, α and γ) used in the
proposed DLR-GAE. First, Figure 3 presents the influence
of neighbor number k when we construct semantic graphs
from node features. In general, a small k value (e.g., 5)
leads to satisfactory accuracy and the performance fluctu-
ates marginally as k changes. On most datasets, a larger k
may result in higher accuracy, indicating that more neigh-
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(a) BlogCatalog (b) Flickr

(c) ACM (d) UAI

Figure 4: Parameter sensitivity of DLR-GAE w.r.t. α and γ.

bors discovered from the feature homophily facilitate the
model to mine more favorable information. Besides, it can
be observed that excessive neighbors do not contribute to
performance improvement and sometimes even lead to accu-
racy decline. This is because that a dense graph may contain
more noises that imperil the relationships between nodes.

Next, we analyze the impact of hyperparameters α and γ
in the loss function L (ZT ,ZS ,A,Us,Y). It can be seen
that the accuracy fluctuates slightly on most datasets when
γ is changing. As for the impact of α, experimental re-
sults reveal that DLR-GAE achieves poor performance when
α = 1. Namely, DLR-GAE encounters significant accu-
racy decline when no feature graph is adopted, especially
on BlogCatalog, Flickr and UAI. This phenomenon indi-
cates that the utilization of feature graphs facilitates the ac-
curacy remarkably. In detail, the proposed DLR-GAE gen-
erally gains better performance when a proper percentage of
node embeddings yielded by semantic graphs is applied.

Visualization of Latent Factor Matrix. In pursuit of ver-
ifying the learned shared latent factor matrix Us, we visual-
ize it in Figure 51. The figure suggests that the learned Us

is symmetric and nonnegative. The cumulative sum of each
row or column of Us is 1. These observations prove that the
proposed DLR-GAE ensures that all constraints of Us are
satisfied and the projection operations succeed in mapping
Us onto the feasible set during the network training, which
facilitates the model to gain more favorable representations
of shared latent factors.

Convergence Analysis. Finally, we examine the conver-
gence of the proposed model, as exhibited in Figure 6. Ex-
perimental results show that the loss values plunge and even-
tually converge on all tested datasets. The accuracy of the

1Zero values shown in the latent factor matrices are elements
with absolute values smaller than 10−2.

(a) Citeseer (b) BlogCatalog

Figure 5: Visualization of learned shared factor matrices Us.

(a) Citeseer (b) BlogCatalog

Figure 6: Loss and accuracy curves of DLR-GAE.

training set and the validation set also rises as the number
of iterations increases, and begins to fluctuate later in the
training. In order to obtain the optimal model with better
generalization and robustness, we select the model with the
highest validation accuracy for the model test.

Conclusion
In this paper, we proposed a graph convolutional network
dubbed Dual Low-Rank Graph AutoEncoders (DLR-GAE),
which explored distinctive node embeddings from topology
and feature space. DLR-GAE encoded node embeddings si-
multaneously via a parallel low-rank autoencoder. The de-
coders conducted low-rank adjacency matrix reconstruction
via a surrogate objective of optimization w.r.t. Schatten-p
norm, which shared the same low-rank latent factor matrix.
To ensure the validity of this matrix, several constraints were
added and we developed relevant solutions to them. The
proposed model was utilized to carry out semi-supervised
classification tasks, and substantial experimental results re-
vealed the favorable performance of DLR-GAE. In the fu-
ture study, we will devote ourselves to further investigation
of multi-channel graph neural networks.
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