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A B S T R A C T

Multi-view semi-supervised classification is a typical task to classify data using a small amount of supervised
information, which has attracted a lot of attention from researchers in recent years. In practice, existing
methods tend to focus on extracting spatial or spectral features using graph neural networks without
considering the diversity and variability of graph structures and the contributions of different views. To address
this challenge, a framework termed graph attention fusion network is proposed, which consists of two phases:
view-specific feature embedding and graph embedding fusion. In the former feature extraction stage, the view-
specific feature embedding module can flexibly focus on the neighborhood calculation operation to learn a
weight for each neighboring node. In the latter feature fusion stage, the graph embedding fusion module is
performed by complementarity and consistency to fuse these embeddings for semi-supervised classification
tasks. We carry out comprehensive experiments in semi-supervised classification on real-world datasets to
substantiate the effectiveness of the proposed approach compared to several existing state-of-the-art methods.
1. Introduction

In recent decades, multi-view representation learning has been ex-
tensively investigated as a significant multimedia technology. In this
context, multimedia technology has been broadly applied to natural
language understanding (Hirschberg & Manning, 2015; Otter et al.,
2021), social networks (Musetti et al., 2022; Nie, Song et al., 2022),
computer vision (Chai et al., 2021; Nie, Qu et al., 2022), recommenda-
tion systems (Chen & Wang, 2022; Chen, Zhao et al., 2021), medical
diagnosis (Han, Yang et al., 2022) and other fields. Specifically, multi-
view data can be represented in many forms as a result of the same
object captured by different sensor devices. For instance, an entity can
be described through an image, an audio, or a video (Deng et al.,
2019; Zhang et al., 2022). Meanwhile, most of the multi-view data are
highly redundant (Gan & Ma, 2022; Xu et al., 2020; Zhao et al., 2023),
and how to process such data becomes an urgent task (Chen, Huang
et al., 2021; Han, Ren et al., 2022; Wang, Chen et al., 2022). As a
consequence, multi-view learning has emerged, and multi-view semi-
supervised classification has been widely used in various fields as one
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of the essential applications (Chen, Cao et al., 2022; Pan & Kang, 2021;
Wang, Wang et al., 2021; Xia et al., 2022).

Multi-view semi-supervised classification exploits the consistency
and complementarity of multi-view features obtained from heteroge-
neous sources to learn common features, and has gained widespread
attention and applications (Chen, Liu et al., 2022; Fu et al., 2022;
Zhang et al., 2018). For the past few years, a large amount of excellent
multi-view semi-supervised classification and clustering methods have
emerged. These approaches consider the correlation between multiple
views and less complementary information in feature learning (Nie
et al., 2016), subspace learning (Yang et al., 2019), attributed graph
learning (Lin et al., 2023) and collaborative training (Xie et al., 2020).
GCN-based methods have made great progress in node classification for
multi-view data. However, most of these models are based on fixed pre-
constructed adjacency matrices. In the model proposed by (Yao et al.
2022), the current graph topology is assumed to be unknown. By using
an attention-based feature fusion mechanism to fuse complementary
information from multiple views, a better graph representation can be
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obtained. Furthermore, the utilization of reasonable feature representa-
tion methods generally improves the performance when fusing multiple
views, but some problems such as overbalancing of each view and
overdependence on parameters could occur when these methods are
combined with weight learning (Xia et al., 2021). These under-explored
problems such as relatively heavy training time and the tendency to
fall into local optimality are equally important (Fei-Fei et al., 2004;
Tang et al., 2022). Therefore, many methods based on GCN variants
have received attention and development, and achieved encouraging
progress. Moreover, the GCN-based approach can investigate consistent
information among multiple perspectives in greater depth and offer
supplementary details for views with significant disparities. In particu-
lar, GCN is intended for analyzing graph-structured data in the context
of spectral theory. It boosts impressive graph representation abilities,
which have been shown to be frequently superior to those of alternative
approaches in empirical studies.

Although these methods based on GCN have achieved encouraging
performance, they suffer from an over-reliance on graph structures
and an unbalanced weight of edges. GCN-based methods over-rely on
the graph structure because they operate directly on the adjacency
matrix that represents the graph structure. In the case of a single
view, without considering the relationships between views, the GCN-
based approach may produce incorrect results when the graph structure
is incomplete or noisy. To mitigate this, we propose a network that
introduces multiple view features to help GCN capture more compre-
hensive embeddings beyond the graph structure. We incorporate node
attributes from a single view and relationships between multiple views
into the graph convolution operation using attention mechanisms, en-
abling the model to consider both node information and structural
features simultaneously. Moreover, through self-attention mechanisms,
we dynamically capture dependencies within and across views, re-
ducing over-dependence on specific graph structures and improving
model generalization and robustness. It is a common issue, especially
in multi-view data where each view contributes to the final fused
representation, but its contribution varies and there is a certain amount
of involved noise. Therefore, our aim is to assign larger weights to
those views that contribute more to the consistency representation,
thus constructing a trustworthy fusion representation for the semi-
supervised classification task. To tackle these challenges, the objective
of this paper is to construct a network architecture that adequately
adapts to various graph structural features for network training and to
develop an efficient weight calculation method. Therefore, we propose
a framework that not only handles complex graph structure and lessens
the dependence on the graph structure, but also applies it to diverse
graph nodes by assigning appropriate weights to the connected nodes.
The overall framework diagram is illustrated in Fig. 1. In the feature
extraction stage, the view-specific feature embedding module can focus
more flexibly on the calculation operation of the neighborhood to
learn the weight coefficients of each neighbor. During the feature
fusion stage, the graph embedding fusion module complements and
maintains consistency in fusing these embeddings for semi-supervised
classification tasks.

The main contributions of this paper can be summarized in the
following three aspects:

• Propose a graph attention fusion network to integrate a consistent
embedding for a single view and an adaptive weight fusion for
multiple views.

• Construct a two-stage projection that includes view-specific fea-
ture embedding and graph embedding fusion, where the former
aims at mining the node-consistent features of heterogeneous
graphs, while the latter focuses on fusing the complementary
representation of multi-view data.

• Experimental results validate the inspiring performance of the
proposed method with limited labeled data in terms of multi-view
semi-supervised classification.
2

2. Related work

In this section, we review recent work on multi-view semi-
supervised classification, graph convolutional networks, and attention
mechanisms.

2.1. Multi-view semi-supervised classification

Semi-supervised classification is a major application direction of
multi-view learning, especially in scenarios where data labeling is
costly or difficult to obtain (Huang et al., 2022). In reality, semi-
supervised learning methods are also utilized in those scenarios where
there is no significant lack of labeled data, while unlabeled data are
effortlessly obtained. It can potentially improve classification perfor-
mance (Van Engelen & Hoos, 2020). For example, Wang, Wang and Guo
(2021) proposed an accelerated embedding method that could solve
the multi-view semi-supervised classification problem by automatically
learning the optimal weight of each view through a small amount
of labeled data. Liu et al. (2022) proposed an iterative framework
with a support vector machine to complement uncertain view data
by learning the consistency of multiple views. Wang, Fu et al. (2022)
proposed a view-specific representation and class probability estima-
tion method to concatenate multiple views by improving pseudo labels,
and to further learning consistent classification information. Zhang
et al. (2021) proposed a robust multi-view fusion model to enhance
the label propagation capability and achieve expectation maximization,
which is not limited by the angular interval of multiple views. Wang,
Shen et al. (2022) proposed a supervised classification method incor-
porating weighted elasticity loss for the fusion of submodels using
complementarity from all views and private information from a single
view.

Numerous studies have recognized that the learning performance of
multi-view algorithms is generally more delightful than that of single-
view ones for semi-supervised classification tasks. However, the super-
vision rate of the multi-view semi-supervised learning algorithm has an
impact on the classification accuracy in practical applications. There-
fore, our method focuses on the features that contribute most to con-
sistent embedding in the process of multi-view feature extraction and
fusion to reduce the impact of the supervision rate on semi-supervised
classification accuracy.

2.2. Graph convolutional networks

The graph convolutional network was first proposed by Kipf and
Welling (2017) and experimentally validated to be more advantageous
in citation networks and knowledge graph data application scenarios.
A learnable semi-supervised feature representation learning method is
proposed through a scalable graph convolution structure. We denote

𝐀̂ = 𝐃̃− 1
2 𝐀̃𝐃̃− 1

2 , (1)

where 𝐀̃ = 𝐀 + 𝐈𝑁 represents the adjacency matrix of the graph,
including self-loop. Here, 𝐈𝑁 is identity matrix, and 𝐃̃ = [𝐃̃𝑖𝑗 ]𝑁×𝑁
is a diagonal matrix with 𝐃̃𝑖𝑖 =

∑

𝑗 𝐀̃𝑖𝑗 . In many cases, a classical
two-layer GCN is used for the semi-supervised node classification task.
Consequently, the forward propagation of a two-layer GCN model is
expressed as

𝐙 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐀̂𝑅𝑒𝐿𝑈 (𝐀̂𝐗𝐖(1))𝐖(2)), (2)

where 𝐙 is the output as the final feature representation. There is
a large amount of work emerging from the fundamental GCN. For
example, Wu et al. (2019) reduced the complexity of GCN with a
fixed low-pass filter and a linear classifier. Li et al. (2020) extended
the framework using Laplace operators and proposed a classification
method for adaptively aggregating graph information of multi-view

data. Chen et al. (2020) proposed a linear model for large-scale data
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Fig. 1. An illustration of the proposed method, which performs a multi-view semi-supervised classification task by learning the embedding of a fused graph through a view-specific
feature embedding module and a graph embedding fusion module.
to alleviate the over-smoothing problem during graph convolution ag-
gregation using a residual network structure. Wang et al. (2020) intro-
duced an adaptive weight learning framework to extract the most rel-
evant embedding representation from node features for multi-channel
network semi-supervised classification applications.

These prior works inspire us to employ a tailored GCN for multi-
view semi-supervised classification tasks. The construction of the hi-
erarchical attention mechanism of the GCN in the semi-supervised
classification of undirected graphs is able to encode graph structures
and node features appropriately.

2.3. Attention mechanism

The transformer model of the attention mechanism was proposed
by Vaswani et al. (2017). The model consists of a set of queries, keys,
and values, denoted by 𝐐, 𝐊, and 𝐕. The output attention matrix is
expressed as

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐐,𝐊,𝐕) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐕𝑇 𝑡𝑎𝑛ℎ(𝐖𝐐 + 𝐔𝐊)), (3)

where 𝐖 and 𝐔 are learnable network parameters. The above formula
is concatenated and projected to facilitate parallel execution of the
attention mechanism, resulting in the multi-head attention as

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝐐,𝐊,𝐕) = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐡𝐞𝐚𝐝1,… ,𝐡𝐞𝐚𝐝ℎ)𝐖𝑂 ,

where 𝐡𝐞𝐚𝐝𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐐𝐖𝑄
𝑖 ,𝐊𝐖𝐾

𝑖 ,𝐕𝐖
𝑉
𝑖 ),

(4)

where 𝐖𝑂 denotes the multi-head learnable weight matrix throughout
a linear layer, and 𝐖𝑄

𝑖 , 𝐖𝐾
𝑖 , 𝐖𝑉

𝑖 are learnable weights for 𝐐, 𝐊, and
𝐕.

Compared to the method of weights calculated by convolution, the
attention-based method has also attracted increasing attention. For
example, Veličković et al. (2017) proposed a graph neural network
framework on a self-attentive mechanism, which assigned different
weight coefficients to neighboring nodes that disregards the graph
structure. Zt et al. (2020) constructed a multimodal attention network
based on graph learning for personalized recommendation. Chen, Frag-
onara et al. (2021) extended the graph attention network to the use of
both the node features in the graph and the edge features, and iterated
them in a parallel manner. Guo et al. (2021) presented a target-tracking
architecture applied to the graph attention mechanism to propagate the
template data of the target information with the searched features.

Inspired by the ability of the attention-based mechanism to dynam-
ically and adaptively discover relationships between nodes and reduce
the complexity of the model, we use an improved attention-based graph
convolutional network for the multi-view semi-supervised classification
task.
3

3. The proposed method

We give a brief description of the whole process of the method.
First, we describe the different view features of the same object using
multiple graphs, where the nodes represent the features of a particular
view and the edges represent the relationship between two features.
Second, we focus on the discriminative feature representation of each
node and its neighbors and extract the view-specific intrinsic informa-
tion of each view in preparation for subsequent fusion. Finally, the
extracted features of samples from different views are fused by the
degree of correlation between them, discarding the features with a
small contribution to the nodes and assigning larger weights to the
features of the nodes with a greater contribution to the fusion.

To illustrate the use of mathematical symbols in this paper, Table 1
lists the explanations of elementary symbols. Note that superscripts
indicate different views and subscripts represent different nodes.

3.1. Network module

In reality, there is both diversity and consistency among the multi-
view descriptions of the same object. In general, node classification
tasks require the extraction of feature representations from multiple
views based on the consistency and complementarity between the
multi-view features for downstream fusion and classification discrim-
ination. Consequently, we need to search not only for the intrinsic
features in the graph structure domain, but also for the correlated fea-
tures between different heterogeneous views. To this end, we propose
a multi-view graph attention network.

Formally, we treat the multi-view data as the input to the network,
so the input as a node feature set is represented as {𝐗(𝑣) ∈ R𝑁×𝐷(𝑣)}𝑉𝑣=1,
where 𝐗(𝑣) = [𝐱(𝑣)1 ; 𝐱(𝑣)2 ;⋯ ; 𝐱(𝑣)𝑁 ]. Here, 𝑉 is the number of views, 𝐷(𝑣)
is the feature dimension of the 𝑣th view data, and 𝑁 is the number
of samples. {𝐱(𝑣)1 ;⋯ ; 𝐱(𝑣)𝑛 }𝑉𝑣=1 denotes labeled samples and the rest are
unlabeled samples. The output of the layer is represented as {𝐙(𝑣) ∈
R𝑁×𝐷′

(𝑣)}𝑉𝑣=1, where 𝐷′
(𝑣) denotes the output feature dimension.

3.1.1. View-specific feature embedding module
Considering that GCN-based multi-view semi-supervised classifica-

tion is heavily dependent on the structure of the graph neural network,
we attempt to use attention mechanisms for forward propagation to
reduce the over-dependence on the complex graph structure. Mean-
while, appropriate weights are assigned to multi-view data. In contrast
to existing GCN methods, our approach focuses more on the contri-
bution between features and views. The self-attention computation is
independent and parallel, no additional matrix operations are required,
and multiple output features can be parallelized on multiple nodes.
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Table 1
Commonly used notations and their descriptions in this paper.

Notations Descriptions

{𝐗(𝑣) ∈ R𝑁×𝐷(𝑣) }𝑉𝑣=1 Input data of 𝑉 views, 𝑁 samples and 𝐷(𝑉 ) features.
{𝐙(𝑣) ∈ R𝑁×𝐷′

(𝑣) }𝑉𝑣=1 The output of view-specific embedding of 𝑉 views.
{𝐖(𝑣)}𝑉𝑣=1 View-specific graph attention network weight.
𝜎(⋅) A non-linear activation function.
{𝐒(𝑣)}𝑉𝑣=1 Weight of view-specific feature embedding module.
{𝑒(𝑣)𝑖𝑗 }

𝑉
𝑣=1 Coefficient between nodes 𝑖 and 𝑗 of the 𝑣th view.

{𝛼(𝑣)
𝑖𝑗 }𝑉𝑣=1 Normalized coefficient between nodes 𝑖 and 𝑗 of the 𝑣th view.

𝜁 (⋅) Fusion function with self-attention mechanism.
{𝛽(𝑣)}𝑉𝑣=1 Feature fusion weight of graph embedding fusion.
𝐫 Shared weight vector for graph embedding fusion.
𝐙 The output of graph embedding fusion module.
d

𝑞

w
f
c
s

𝛽

F

To obtain the high-level features, a linear transformation is applied
to each node by a weight matrix 𝐖 ∈ R𝐷(𝑣)×𝐷′

(𝑣) . The coefficient of a
elf-attention mechanism for the 𝑣th view is formulated as
(𝑣)
𝑖𝑗 = 𝐒(𝑣)𝜎

([

𝐖(𝑣)𝐱(𝑣)𝑖 ∥𝐖(𝑣)𝐱(𝑣)𝑗

])

, (5)

here {𝐒(𝑣)}𝑉𝑣=1 is a shared coefficient matrix of attention, and 𝜎(⋅) is
et to LeakyReLU as an activation function. Eq. (5) shows the impact
f node 𝑖 on node 𝑗 of the 𝑣th view feature. Note that node 𝑖 is
ssociated with its neighbors and itself. Therefore, we compute 𝑒(𝑣)𝑖𝑗
or each node, as a neighborhood coefficient of node 𝑖 and node 𝑗.
hen its normalization can be obtained using the softmax function. The
ormalized coefficient of the attention layer above is rewritten as

(𝑣)
𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒(𝑣)𝑖𝑗 ) =

𝑒𝑥𝑝(𝑒(𝑣)𝑖𝑗 )
∑

𝑘∈𝑖
𝑒𝑥𝑝(𝑒(𝑣)𝑖𝑘 )

, (6)

here 𝑖 denotes the first-order neighbors of node 𝑖 in the graph.
e obtain the normalized attention coefficient, which can be used to

alculate the linear combination of the corresponding multi-view fea-
ures. To promote the learning process of self-attention, we extend our
echanism by adding multi-head attention in the first layer. For this

oal, all learned embedding features are concatenated as the following
orm
(𝑣)
𝑖 = ∥𝐾𝑘=1𝜉(

∑

𝑗∈𝑖

(𝛼(𝑣)𝑖𝑗 )𝑘(𝐖(𝑣))𝑘𝐱(𝑣)𝑗 ), (7)

here ∥ denotes the concatenation operator and 𝐾 represents the
umber of layers in the network. Here, we use a nonlinear function 𝜉 to
onstruct the ultimate output of all nodes. Note that, if we apply Eq. (7)
o the last layer, the final output would be influenced by all the afore
ayers, which may lead to undesirable results. For effectively optimizing
he final output, we take the average of 𝐾 layers for multi-view
emi-supervised classification problems as

(𝑣)
𝑖 = 𝜉( 1

𝐾

𝐾
∑

𝑘=1

∑

𝑗∈𝑖

(𝛼(𝑣)𝑖𝑗 )𝑘(𝐖(𝑣))𝑘𝐱(𝑣)𝑗 ). (8)

t this point, we have obtained the consistent latent feature represen-
ation of the 𝑣th view data.

.1.2. Graph embedding fusion module
Based on the consistent latent representation of each view obtained

bove, we focus on feature fusion in adaptive self-attention weights.
ased on multi-view data to construct a graph structure, using the
elf-attention mechanism to capture multiple relationships between
iews, the global semantic information of the constructed graph can
e captured during execution, and consistency information between
ifferent views can be extracted. The formulation of general approach
usion is given by

= 𝜁 ([𝛽(1)𝐙(1),… , 𝛽(𝑉 )𝐙(𝑉 )]), (9)

here {𝛽(𝑣)}𝑉𝑣=1 is the set of fusion weights, and 𝜁 (⋅) denotes the fusion
unction. We use an attention mechanism to indicate directions of
4

ultiple view fusion for the semi-supervised classification task.
Considering that the latent embedding of the 𝑣th view data is
enoted by 𝐙(𝑣), the fusion weight can be obtained as follows
(𝑣)
𝑖 = 𝐫𝑇 ⋅ 𝜎(𝐐(𝑣) ⋅ (𝐳(𝑣)𝑖 )𝑇 + 𝐛(𝑣)), (10)

here 𝐫 denotes a shared attention vector, and 𝜎(⋅) is an activation
unction such as 𝑡𝑎𝑛ℎ(⋅). 𝐐(𝑣) ∈ R𝐷(𝑣)×𝐷′

(𝑣) is the weight matrix of a fully-
onnected layer, and 𝐛(𝑣) ∈ R1×𝐷′

(𝑣) is the bias vector. Then, we use a
oftmax function to normalize the attention weight 𝑞𝑖 as follows:

(𝑣)
𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑞(𝑣)𝑖 ) =

𝑒𝑥𝑝(𝑞(𝑣)𝑖 )
∑𝑉

𝑣=1 𝑒𝑥𝑝(𝑞
(𝑣)
𝑖 )

. (11)

inally, for all the nodes, the learned weights are obtained from 𝛽(𝑣),
which is comprised of a diagonal matrix 𝑑𝑖𝑎𝑔(𝛽(𝑣)1 , 𝛽(𝑣)2 ,… , 𝛽(𝑣)𝑁 ). After
learning all the features of nodes, we combine all the latent embeddings
to obtain the final predictive label matrix 𝐘̂ of embedding 𝐙 as follows:

𝐘̂ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑉
∑

𝑣=1
𝛽(𝑣)𝐙(𝑣)). (12)

3.2. Training loss

For a multi-view semi-supervised classification problem, we use a
cross-entropy loss function to estimate the difference between the pre-
dicted samples and the labeled samples to measure the fitting degree,
expressed as

 = −
∑𝑛

𝑖=1
∑𝑐

𝑗=1 𝐘𝑖𝑗 𝑙𝑛 𝐘̂𝑖𝑗 , (13)

where 𝐘𝑖𝑗 denotes the one-hot coding of the given ground truths, and
𝐘̂𝑖𝑗 indicates the probability that the 𝑖th latent representative sample
belongs to the class 𝑗.

Gathering all the aforementioned details, the procedures of the pro-
posed graph attention fusion network for multi-view semi-supervised
classification are summarized in Algorithm 1.

4. Experiments

In this section, we evaluate the proposed framework on several real-
world multi-view datasets in terms of the semi-supervised classification
task. Two main evaluation metrics are used to assess the performance
of the above framework, compared with nine prior state-of-the-art
methods, and the results obtained from the experiments are illustrated
and analyzed.

4.1. Experimental settings

In this section, we introduce eight real-world datasets, nine state-

of-the-art compared methods, and their parameter settings.
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Algorithm 1 Graph Attention Fusion Network for multi-view semi-
supervised classification (GAF-Net)

Require: Multi-view data  = {𝐗(𝑣)}𝑉𝑣=1, labeled samples {𝐱(𝑣)𝑖 }𝑛𝑖=1,
learning rate 𝑙𝑟, and network layer number 𝐿, number of head
attentions ℎ𝑒𝑎𝑑𝑠, dropout rate 𝑑𝑟𝑜𝑝𝑜𝑢𝑡.

nsure: Predicted labels 𝐘̂ of test samples.
1: Initialize adjacency matrices {𝐀(𝑣)}𝑉𝑣=1 via Gaussian kernel based

KNN;
2: Initialize parameter matrices {𝐖(𝑣)}𝑉𝑣=1, {𝐐(𝑣)}𝑉𝑣=1, coefficient

matrices {𝐒(𝑣)}𝑉𝑣=1 and shared attention vector 𝐫;
3: while not convergent do
4: for 𝑣 = 1 → 𝑉 do
5: Compute {𝑒(𝑣)𝑖𝑗 } with Eq. (5);
6: Perform 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 operation on {𝑒(𝑣)𝑖𝑗 } to obtain {𝛼(𝑣)𝑖𝑗 } with Eq.

(6);
7: Calculate {𝐳(𝑣)𝑖 } with Eq. (8);
8: end for
9: Calculate the final label matrix 𝐘̂ with Eq. (12);
0: Update {𝐖(𝑣)}𝑉𝑣=1, {𝐐

(𝑣)}𝑉𝑣=1, {𝐒
(𝑣)}𝑉𝑣=1 and 𝐫 with backpropaga-

tion;
1: end while
2: return The predicted class label of the sample 𝐱𝑖 is computed by

𝐲̂𝑖 = argmax𝑗 𝐘̂𝑖𝑗 for any 𝑖 ∈ {𝑛 + 1,⋯ , 𝑁}.

4.1.1. Datasets
The proposed approach is applied on eight real-world multi-view

datasets with various data categories, samples, views, and features.
3Sources1 is a text dataset based on the news in three languages and

consists of 169 news items by 6 topics, namely entertainment, politics,
business, sports, health, and technology.

Animals is a dataset which consists of 30,475 animal pictures.
Based on this, we generate a subset of 50 categories and 10,158
samples. Two types of features are extracted from the original data with
two views: 4.096-D DECAF and 4,096-D VGG19.

Caltech202 is a subset of Caltech101, with 20 categories and 2386
images. We extract 6 views of features, including Gabor, WM, CEN-
TRIST, HOG, GIST, and LBP.

HW3 is composed of 2000 handwritten digital images of 10 cate-
gories, and each category contains 200 samples. Each image comes with
6 categories of related features.

MNIST4 is a handwritten dataset with a total of 2000 samples,
including 10 categories ranging from ‘0’–‘9’ with 3 views, where its
features stand for IsoProjection, linear descriptive analysis, and neigh-
borhood preserving embedding.

NUS-WIDE5 is an image set, containing 2400 samples with 12
classes. Each sample has six view features, including 64 color his-
tograms, 144 color correlograms, 73 edge direction histograms, 128
wavelet textures, 225 block-wise color moments, and 500 SIFT descrip-
tors.

Scene156 contains both indoor and outdoor environments, including
15 scene categories and 4485 images.

WebKB-cornell7 is a subset of WebKB about web pages and hyper-
link data of Cornell University. There are 5 classes and 2 views with a
total of 195 samples.

Table 2 shows the summary statistics of these datasets, reporting
the numbers of views, features, and classes.

1 http://mlg.ucd.ie/datasets/3sources.html
2 https://data.caltech.edu/records/mzrjq-6wc02
3 https://cs.nyu.edu/roweis/data.html
4 http://yann.lecun.com/exdb/mnist/
5 https://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
6 https://doi.org/10.6084/m9.figshare.7007177.v1
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4.1.2. Comparison methods
KNN: 𝐾-Nearest Neighbors is a simple yet classical classification

algorithm, where the class of the current node is determined via the
nearest neighbors.

AMGL (Nie et al., 2016): Parameter-free auto-weighted multiple
graph learning is a framework that can learn the weight automatically
for semi-supervised classification and multi-view clustering tasks.

WREG (Yang et al., 2019): WREG is a supervised learning method
o fuse multi-view data by mapping original features onto a low-
imensional subspace. The way to adaptively assign learned weights
an maximize the correlative and complementary information for the
lassification task.
HLR-M2VS (Xie et al., 2020): Hyper-Laplacian regularized multilin-

ar multi-view self-representation model utilizes a unified view-specific
eature space and an evidence-based tensor space to learn the global
elevance and local structure among views to solve the semi-supervised
lassification task.
Co-GCN (Li et al., 2020): Co-GCN unifies three methods into one

ramework for the semi-supervised classification task, including co-
raining, spectral graph information, and neural network. The method
an learn the spectral information from the rest views by combinatorial
aplacian to utilize the graph information.
AME-MSC (Wang, Wang & Guo, 2021): AME-MSC proposes an au-

omatically learnable weight manifold embedding model for classifying
nlabeled data using the category information of labeled data, which is
xperimentally proven to have positive robustness and generalization
bility.
DSRL (Wang, Chen et al., 2022): DSRL utilizes a learnable sparse

egularizer composed of multiple reusable blocks, where each block
onsists of a learnable piecewise linear activation function, enabling
nd-to-end multi-view clustering and semi-supervised classification
asks.
LGCN-FF (Chen et al., 2023): LGCN-FF divides a multi-step op-

imization strategy into some sub-problems by exploring the feature
usion network and learnable graph convolution network.
IMvGCN (Wu et al., 2023): IMvGCN provides an end-to-end frame-

ork in an interpretable way, which introduces a series of theoretical
erivations to capture the multi-view embedding from feature and
opology perspectives.

These comparison methods all serve the semi-supervised classifi-
ation task. Notably, AMGL, Co-GCN, and AME-MSC can obtain the
eight automatically through graph-based learning. However, our pro-
osed method pays more attention to the features that contribute more
o the consistency representation. Simultaneously, it does not discard
he lesser contributive features completely.

.1.3. Parameter setting
In our experiments, we follow the original parameter settings of the

ompared methods. Specifically, it is worth noting that we have also
ade some special modifications for certain parameters to obtain better

esults as follows:
KNN: We randomly choose the number of neighbors in the given

raining set from 1 to 10 for more robust label prediction.
WREG: We apply the trade-off parameter 𝜆 = 0.1. We set the value

f the parameter k provided in the paper for the existing datasets and
= 1 for the rest.
HLR-M2VS: We set 𝜆1 = 0.2 and 𝜆2 = 0.4 for the weight factors. The

yperedge of 𝑘 nearest neighbors is constructed with a fixed setting of
= 5.
Co-GCN: We use a 2-layer GCN framework and configure the learn-

ng rate of the gradient descent method to be 0.001.
AME-MSC: We set the probability transition step as 𝑠𝑡𝑒𝑝 = 5 in the

eep rank walk. The regularization parameter 𝛽 is fixed as 1.
DSRL: We apply a 10-layer network architecture and tune the
earning rate of the optimization method to be 0.05.

http://mlg.ucd.ie/datasets/3sources.html
https://data.caltech.edu/records/mzrjq-6wc02
https://cs.nyu.edu/roweis/data.html
http://yann.lecun.com/exdb/mnist/
https://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
https://doi.org/10.6084/m9.figshare.7007177.v1
http://www.cs.cmu.edu/webkb/
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Table 2
Statistics of the multi-view datasets used for the experiments.

Datasets Data Types Classes Views Samples Features

3Sources Online News Texts 6 3 169 3,068/3,560/3,631
Animals Animal Images 50 2 10,158 4,096/4,096
Caltech20 Object Images 20 6 2,386 40/48/254/512/928/1,984
HW Handwritten Images 10 6 2,000 27/153/157/301/481/596
MNIST Handwritten Images 10 3 2,000 9/30/30
NUS-WIDE Natural Images 12 6 2,400 64/73/128/144/225/500
Scene15 Environments Images 15 3 4,485 1,180/1,240/1,800
WebKB-cornell Web Pages 5 2 195 195/1,703
Table 3
Node classification results of all compared methods when 10% samples are labeled.

Datasets/Methods KNN AMGL WREG HLR-M2VS Co-GCN AME-MSC DSRL LGCN-FF IMvGCN GAF-Net

3Sources 46.0 (8.6) 39.8 (7.9) 54.0 (0.5) 69.0 (0.4) 44.1 (0.2) 77.1 (2.9) 77.2 (3.9) 66.3 (1.5) 89.5 (0.6) 90.1 (1.1)
Animals 73.6 (0.6) 70.9 (0.4) 82.1 (0.3) 72.7 (0.5) 80.2 (1.2) 66.3 (0.2) 76.4 (0.5) 72.2 (6.0) 82.8 (0.5) 83.0 (0.3)
Caltech20 67.0 (0.4) 45.0 (3.0) 49.2 (1.7) 80.4 (0.1) 67.0 (8.1) 70.4 (0.8) 80.9 (1.7) 71.9 (1.2) 43.0 (0.9) 81.6 (1.1)
HW 82.5 (0.7) 88.5 (0.8) 89.1 (1.0) 86.3 (2.1) 89.0 (1.1) 70.7 (1.0) 90.3 (0.9) 50.6 (12.9) 95.1 (0.3) 95.2 (0.6)
MNIST 86.4 (1.4) 69.5 (1.4) 83.9 (1.4) 89.6 (6.4) 87.7 (0.0) 81.5 (0.9) 88.3 (0.7) 88.5 (1.1) 89.7 (0.4) 91.1 (1.0)
NUS-WIDE 31.8 (1.2) 28.7 (0.4) 26.7 (1.7) 24.3 (0.1) 24.3 (0.1) 40.4 (1.9) 42.7 (0.7) 25.7 (3.5) 33.4 (1.3) 43.3 (2.3)
Scene15 45.2 (0.9) 68.4 (0.6) 52.3 (1.5) 67.4 (1.3) 58.6 (1.0) 60.1 (0.7) 66.8 (0.8) 18.8 (1.7) 66.7(0.0) 69.4 (0.5)
WebKB-cornell 48.9 (3.9) 53.1 (5.7) 50.3 (1.3) 51.8 (0.7) 50.6 (0.3) 43.3 (6.8) 49.2 (3.7) 52.5 (5.0) 42.4(0.5) 60.2 (2.0)
Table 4
Node classification results of all compared methods when 15% samples are labeled.

Datasets/Methods KNN AMGL WREG HLR-M2VS Co-GCN AME-MSC DSRL LGCN-FF IMvGCN GAF-Net

3Sources 37.9 (4.3) 39.4 (1.6) 68.2 (0.7) 73.8 (0.5) 70.1 (0.2) 81.2 (3.1) 85.4 (3.2) 63.3 (0.8) 90.6 (0.3) 92.3 (1.1)
Animals 75.7 (0.3) 74.2 (0.3) 82.5 (0.3) 75.1(0.4) 75.7 (0.4) 72.7 (0.1) 79.4 (0.2) 73.1 (0.6) 83.0 (0.5) 83.2 (0.0)
Caltech20 69.7 (1.4) 49.6 (2.2) 75.4 (0.1) 84.3 (0.2) 71.4 (9.1) 73.8 (1.3) 81.0 (0.9) 74.6 (0.6) 46.0 (2.1) 84.5 (0.8)
HW 85.2 (1.5) 89.9 (0.4) 90.1 (0.8) 88.8 (1.0) 90.1 (0.0) 73.7 (0.5) 91.4 (0.6) 61.3 (6.3) 95.9 (0.2) 96.1 (0.6)
MNIST 88.1 (1.7) 69.3 (1.4) 86.2 (0.8) 89.8 (3.5) 88.8 (0.0) 62.4 (1.7) 88.8 (0.5) 88.8 (1.2) 89.4(0.2) 91.0 (1.3)
NUS-WIDE 33.3 (1.4) 31.3 (0.1) 28.8 (0.1) 26.6 (0.0) 25.2 (0.1) 44.8 (0.3) 44.5 (0.4) 25.7 (2.3) 33.5 (0.1) 46.1 (1.0)
Scene15 48.0 (0.7) 68.3 (0.6) 57.2 (1.4) 67.9 (1.2) 60.0 (2.1) 65.7 (0.1) 66.9 (0.6) 34.1 (5.0) 67.9 (0.1) 68.6 (0.3)
WebKB-cornell 49.3 (3.2) 56.1 (5.1) 64.9 (3.5) 52.4 (0.6) 53.3 (0.4) 49.6 (1.8) 50.1 (3.9) 51.6 (9.4) 45.1(0.9) 71.0 (4.6)
LGCN-FF: The weight decay is 0.01, and the learning rate is set as
0.01 for the fully-connected network and learnable GCN, 0.001 for the
autoencoders.

IMvGCN: The learning rate is fixed at 0.01. For all datasets, we set
the hyperparameter 𝜆 = 0.5.

With regard to the proposed method, a 2-layer GCN with an at-
tention mechanism is adopted. The number of hidden variables ranges
in {8, 16, 64}, and the dropout rate is selected from {0.3, 0.4, 0.6}. The
learning rate of the optimizer is fixed to be 0.005. We provide several
regularization methods as options, in addition to standard regulariza-
tion. There is also max–min normalization for sparse data and outliers.
We set the weight decay to 0.0005. The activation function of the
attention layer is set as LeakyReLU(⋅). The KNN method is applied to
construct the adjacency matrix, where the neighbor number is fixed
as 9. The maximum number of iterations is set to 1,000. The proposed
GAF-Net framework is implemented by PyTorch and runs on a machine
with an I7-10800H CPU@2.3 GHz NVIDIA RTX 3060 GPU and 32G
RAM. In addition to the Animals dataset, the running environment is
completed using the A100 computing units provided by Google.

4.2. Semi-supervised classification

For all methods, we randomly select 10%, 15%, and 20% samples
as labeled data, respectively, as shown in Tables 3–5.

We report the node classification results with average accuracy
and standard deviation. Under the supervision of the above three
labeling ratios, the remaining unlabeled data are used to evaluate
the prediction performance of the proposed model and to calculate
the cross-entropy loss. All methods are run 6 times. The experimental
results indicate the proposed method achieves state-of-the-art perfor-
mance on almost all test datasets. Compared with other methods, a
6

significant improvement is achieved on the Scene15 dataset when the
labeled samples rate is 0.1, outperforming the second best by 1.44%.
The following datasets 3Sources, Animals, Caltech20, HW, MNIST, NUS-
WIDE, and WebKB-cornell have yielded suboptimal results. The best
performance is achieved on WebKB-cornell when the labeled ratio is
0.15, followed by the second-best performance on 3Sources and NUS-
WIDE. When the labeled ratio is set as 0.2, increasing the number of
labeled samples does not result in a significant improvement in overall
accuracy. Instead, there is only a slight improvement observed across
most datasets.

Fig. 2 shows the accuracy performance of nine compared methods
under different ratios of labeled samples. This experimental result
shows that the proposed method GAF-Net is particularly effective for
datasets with a small amount of labeled samples. That is, GAF-Net
performs well at less than 20% supervision rate and is particularly
suitable for semi-supervised classification tasks.

4.3. Convergence analysis

Figs. 3–5 show the convergence of the loss function of GAF-Net.
From the figures, we can obtain the following enlightening obser-
vations. We choose three representative datasets for an illustration,
including Caltech20, HW, and MNIST. First, the loss typically decreases
rapidly within 100 iterations for different supervision rates, because
the loss is usually an approximately vertical line at the beginning of
training. Then, after 100 iterations, there is a gradual stable value on
the datasets except for the Caltech20 dataset when the supervision rate
of 0.2 shows a significant loss of around 800 iterations. Second, the loss
is significantly reduced after training on different datasets for a specific
time, after about 600 iterations on the Caltech20 dataset, 200 iterations

on the HW dataset, and 500 iterations on the MNIST dataset. The reason
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Table 5
Node classification results of all compared methods when 20% samples are labeled.

Datasets/Methods KNN AMGL WREG HLR-M2VS Co-GCN AME-MSC DSRL LGCN-FF IMvGCN GAF-Net

3Sources 46.6 (9.3) 41.8 (2.3) 79.6 (0.8) 75.7 (0.2) 76.3 (0.3) 80.8 (0.9) 84.2 (2.9) 63.0 (0.2) 90.9(0.3) 91.1 (2.1)
Animals 76.5 (0.4) 76.5 (0.3) 83.9(0.4) 77.3(0.6) 81.4 (1.5) 77.1 (0.7) 80.6 (0.1) 74.2 (2.0) 84.2 (0.1) 84.3 (1.0)
Caltech20 70.5 (1.0) 83.2 (0.8) 75.0 (0.7) 86.1 (1.1) 74.8 (9.8) 83.0 (1.0) 82.8 (0.8) 74.3 (0.8) 47.2 (2.0) 84.2 (0.9)
HW 85.5 (0.4) 91.4 (0.5) 90.9 (0.2) 89.9 (0.0) 90.9 (0.0) 75.4 (1.2) 92.9 (0.5) 69.7 (7.5) 96.1(0.6) 96.5 (0.5)
MNIST 88.8 (0.6) 70.3 (1.1) 87.7 (0.9) 90.4 (0.0) 89.7 (0.0) 68.4 (2.5) 89.1 (0.5) 89.6 (1.7) 88.7 (0.4) 91.3 (0.5)
NUS-WIDE 34.4 (0.9) 34.9 (0.5) 29.5 (0.8) 29.1 (0.1) 26.2 (0.2) 46.3 (0.1) 47.3 (0.5) 17.2 (5.8) 37.4 (1.5) 47.9 (0.9)
Scene15 49.2 (0.5) 68.9 (0.5) 59.2 (1.3) 68.4 (0.6) 61.6 (3.4) 68.6 (0.7) 67.2 (0.4) 19.4 (0.8) 68.4 (0.1) 69.1 (0.7)
WebKB-cornell 51.3 (5.5) 62.3 (2.0) 69.1 (5.2) 56.7 (0.7) 54.1 (0.4) 57.2 (1.6) 51.5 (3.7) 64.4 (2.0) 48.5 (1.0) 69.8 (2.9)
Fig. 2. Classification performance of all compared methods for the labeled ratios ranging in {0.05, 0.10, ⋯, 0.50}.
Fig. 3. Convergence curves of the proposed method on the Caltech20 dataset when the supervised ratio is fixed in {0.1, 0.15, 0.2}.
is that before learning a relatively stable embedding representation
using the attention layer, the feature fusion network is also fusing the
weights of multiple views to find a stable output when the loss value
is large. Finally, as the loss continues to converge to a stable value,
the accuracy of the corresponding unlabeled data gradually rises to a
stable high value. Later in the training, it can be seen that the loss and
accuracy also fluctuate somewhat after convergence, indicating that a
7

stopping strategy with fewer iterations can be used, and experiments
show that the average accuracy performs better.

We select all datasets and empirically demonstrate that our frame-
work has better robustness under different hidden layers, as shown in
Fig. 6. We set the hidden layers in the range of {8, 16,… , 80}. While the
ratio of labeled samples is fixed as 0.1, Fig. 6(a) demonstrates that for
most datasets the classification accuracy fluctuates only slightly as the
number of hidden layers increases. The same phenomenon is observed
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Fig. 4. Convergence curves of the proposed method on the HW dataset when the supervised ratio is fixed in {0.1, 0.15, 0.2}.
Fig. 5. Convergence curves of the proposed method on the MNIST dataset when the supervised ratio is fixed in {0.1, 0.15, 0.2}.
Fig. 6. Accuracy curves under different hidden layers when the labeled ratio ranges in {0.1, 0.15, 0.2}.
in Fig. 6(b). Although, Fig. 6(c) has a slightly larger fluctuation than the
two above. However, the overall trend of these three figures shows that
the classification accuracy is not significantly affected by the increase
in hidden layers. Even, individual datasets have the problem that
the classification accuracy decreases as the number of hidden layers
increases. The reason for this situation can be reduced to the overfitting
of the network parameters. The reward is more pronounced when the
supervision sample is small. Thus, we can use fewer hidden layers to
achieve satisfactory classification performance.

4.4. Ablation study

In this subsection, we perform an ablation study to show the con-
tribution of model components. It is noted that the proposed method
GAF-Net is composed of the fusion of multiple views by the optimized
attention weights. For a comparative approach to multi-view fusion, a
weighted average method can be used. The main difference between
this weighted average and the proposed version of fusion is that each
view feature is treated equally and each view has the same contribution
8

to the fused consistent representation. More specifically, for the fusion
of multiple views, the weights of each view are not considered and a
plain weighted average method is employed.

We construct a series of fusion experiments by using the average
fusion , and the graph attention fusion  , respectively. The impact
of each component on the performance of the proposed method is
shown in Table 6. It can be observed that the classification accuracy
obtained by our method achieves the best results. The experimental
results demonstrate that for different semi-supervised labeled ratios, the
proposed method outperforms the results that only extract features and
fuse them by a weighted average.

5. Conclusion

In this paper, we proposed a graph neural network framework
based on an attention mechanism, which solved the multi-view clas-
sification problem by learning the most essential representations and
constructing feature fusion networks. In the feature fusion networks,
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Table 6
Ablation experiments of the proposed method under label ratios in {0.10, 0.15, 0.20}.
  labeled ratio 3Sources Animals Caltech20 HW MNIST NUS-WIDE Scene15 WebKB-cornell

✓ 0.10 80.6 81.5 79.7 94.3 88.1 30.1 67.3 59.6
✓ 90.1 83.0 81.6 95.2 91.1 43.3 69.4 60.2

✓ 0.15 82.0 82.0 81.1 96.0 90.0 32.9 68.2 64.5
✓ 92.3 83.2 84.5 96.1 91.0 46.1 68.6 71.0

✓ 0.20 80.1 83.4 81.6 96.3 91.0 33.2 68.7 64.2
✓ 91.1 84.3 84.2 96.5 91.3 47.9 69.1 69.8
F

F

G

G

H

H

H

H

K
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L

L
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attention mechanisms were used to extract the importance of dif-
ferent views and to fuse different consistent representations by con-
structing attentional networks and exploiting complementarity. The
graph fusion process was performed by an attention layer that adap-
tively fused multiple topological graphs from multiple views. Finally,
the experimental results also demonstrated that the proposed frame-
work achieved promising performance in multi-view semi-supervised
classification tasks.

There are still several research directions to be further explored.
First, although GCN-based approaches achieve satisfactory results for
node classification tasks, the construction of multiple views in almost
all models is developed based on a fixed adjacency matrix, resulting in
limited model expressiveness. Second, existing GCN methods usually
lack interpretability. By using an attention-based mechanism, nodes in
the same neighborhood can be implicitly assigned to different weights.
Therefore, it is an interesting research direction to explore the inter-
pretability of the model by analyzing the learned attention weights.
Finally, it is quite common to obtain multi-view data with missing data
from a certain view or some views due to sensors, etc. Therefore, semi-
supervised multi-view classification for such incomplete views may be
also a worthwhile research direction.
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