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Interpretable Graph Convolutional Network for
Multi-view Semi-supervised Learning
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Abstract—As real-world data become increasingly hetero-
geneous, multi-view semi-supervised learning has garnered
widespread attention. Although existing studies have made efforts
towards this and achieved decent performance, they are restricted
to shallow models and how to mine deeper information from
multiple views remains to be investigated. As a recently emerged
neural network, Graph Convolutional Network (GCN) exploits
graph structure to propagate label signals and has achieved
encouraging performance, and it has been widely employed
in various fields. Nonetheless, research on solving multi-view
learning problems via GCN is limited and lacks interpretability.
To address this gap, in this paper we propose a framework
termed Interpretable Multi-view Graph Convolutional Network
(IMvGCN1). We first combine the reconstruction error and
Laplacian embedding to formulate a multi-view learning problem
that explores the original space from feature and topology
perspectives. In light of a series of derivations, we establish
a potential connection between GCN and multi-view learning,
which holds significance for both domains. Furthermore, we
propose an orthogonal normalization method to guarantee the
mathematical connection, which solves the intractable problem of
orthogonal constraints in deep learning. In addition, the proposed
framework is applied to the multi-view semi-supervised learning
task. Comprehensive experiments demonstrate the superiority of
our proposed method over other state-of-the-art methods.

Index Terms—Graph convolutional network, interpretable
deep learning, orthogonal normalization, multi-view semi-
supervised classification.

I. INTRODUCTION

W ITH the development of multimedia technology, the
complexity and diversity of data are keeping growing.

Meanwhile, extensive data collection pathways are available in
many real-world scenarios. For example, the news is usually
reported in different sources and with different media; an ob-
ject can be illustrated by features of multiple mediums such as
image, text and audio, etc. These types of data, which contain
representations of the same instance from different sources
or various feature extractors, are known as multi-view data.
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Actually, multi-view data have been extensively applied to a
multitude of practical applications, such as machine learning
[1], [2], [3], data mining [4], [5], [6] and computer vision [7],
[8], [9]. Although each view only carries partial information of
a sample, they implicitly express the same semantics. Due to
the potential consistency and complementarity among views,
multi-view data usually lead to encouraging performance over
single-view data, which has motivated the research on multi-
view learning [10], [11], [12].

Despite the growing variety of data collection ways, labeling
data is still time-consuming and labor-intensive. And due to
the two characteristics of multi-view data: richer data sources
and fewer labels, this issue is even severer for multi-view
learning. Therefore, it requires more efficient utilization of
unlabeled samples to handle multi-view data. Many studies
[13], [14], [15] have indicated that encouraging performance
can be obtained by utilizing unlabeled multi-view data, which
suggests the multi-view semi-supervised learning. Among nu-
merous multi-view semi-supervised learning approaches, the
graph-based methods exhibit several advantages, notably the
ability to represent arbitrarily distributed data. The graph-
based multi-view learning paradigms are usually based on
graphs constructed by the similarity between paired samples,
and various approaches have been developed on this common
foundation. Nie et al. [16] proposed a model that can automat-
ically allocate a weight to each view. Li et al. [17] adopted a
straightforward strategy coalescing multi-view graphs to learn
the weights and the common graph. Jia et al. [18] introduced
orthogonality and adversarial similarity constraints to learn
representations with less redundancy. The majority of these
approaches are limited to shallow models, thus there is a wide
expectation to leverage the representative capacity of deep
learning to achieve more satisfactory effects.

Recently, graph-based deep learning methods, like graph
neural network [19], graph autoencoder [20] and graph LSTM
[21], [22] etc., have been increasingly investigated. Among
them, Graph Convolutional Network (GCN) [23] has drawn
considerable attention owing to its outstanding performance
in graph learning. Based on rigorous theoretical foundations,
GCN can efficiently propagate label signals in non-Euclidean
space. Numerous variants of GCN [24], [25], [26] have been
widely applied in diverse fields, while their applications to
multi-view learning are still limited. Zhang et al. [27] designed
a multi-view GCN with a fusion module capturing the spatial
correlations between nodes. Cheng et al. [28] designed two-
pathway encoders to map graph embedding features and
learn cross-view consistency information. Although these ap-
proaches have attempted to apply GCN to multi-view learning
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and demonstrated their superior performance, they did not
explicitly establish a theoretical connection between GCN and
multi-view learning. In other words, although these approaches
have overcome the drawbacks of traditional shallow models,
the lack of interpretability ensues. There have been several
studies [29], [30], [31], [32] making efforts in interpretable
neural networks. Nonetheless, only a limited number of studies
have investigated how GCNs are connected to optimization
problems theoretically [33]. Beyond that, some recent research
has indicated shortcomings of GCN. For instance, Zhang et al.
[34] sought to find high-order connectivity patterns to capture
semantic information. Wang et al. [35] revealed that GCN did
not well integrate information from neighbors. Li et al. [36]
argued that GCN suffered from over-smoothing problem, that
is, the performance of GCN decreases as the number of layers
increases. And these problems may damage performance even
more when handling complex multi-view data. In summary,
it is vital to improve GCN and explore the interpretability of
GCN-based methods for multi-view learning.

For the purpose of tackling the aforementioned issues, this
paper proposes an effective framework termed Interpretable
Multi-view Graph Convolutional Network (IMvGCN), which
optimizes a reasonable multi-perspective learning problem and
establishes its theoretic connection to GCN. Considering the
latent consistency and complementarity among multifarious
views, we first formulate a multi-view learning problem.
More specifically, the reconstruction error is introduced and
extended to the multi-view case, which captures the inde-
pendence features and consistency semantics across views.
Further, the multi-view Laplacian embedding is presented
to maintain the local invariance on manifold structures for
each view and to enable the framework to adapt to distinct
distributed data. Crucially, based on a series of derivations, we
propose a GCN-based framework with a flexible filter inspired
by the optimization. Beyond that, a differentiable orthogonal
normalization method is presented to satisfy the orthogonal
constraint. The orthogonal normalization guarantees the con-
nection between the multi-view problem and IMvGCN while
allowing the weight matrices to be updated in a data-driven
manner, and a detailed analysis is provided to demonstrate its
feasibility. It can also adapt to various neural networks with
promising generalizability. The optimization-inspired frame-
work IMvGCN can not only retain the interpretability but also
benefit from the deep network. Figure 1 briefly illustrates the
proposed IMvGCN. The main contributions of this paper are
summarized as follows:

1) Introduce the multi-view reconstruction error paired with
Laplacian embedding to capture the independence and
consistency, providing the basis for bridging multi-view
learning and graph convolutional network.

2) Propose an end-to-end framework through a series of
theoretical derivations, which achieves adjustable Lapla-
cian smoothing by constructing a flexible graph filter.

3) A differentiable orthogonal normalization method is
proposed, which furnishes a way to achieve strict or-
thogonality in deep learning with broad applicability.

4) Experimental results indicate the superiority of IMvGCN

in multi-view semi-supervised classification tasks, espe-
cially when the labeled samples are scarce (e.g. 1%).

II. RELATED WORK

In this section, we review some works relevant to our re-
search, starting with an overview of GCN and then focusing on
various approaches for multi-view semi-supervised learning.

A. Graph Convolutional Network

Graph convolutional network (GCN) was first proposed by
Kipf et al. [23] and applied for improving semi-supervised
classification performance. Generally, the propagation rule of
GCN can be formulated as:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W(l)

)
, (1)

where H(l) and H(l+1) denote the input and the output of the
l-th graph convolutional layer with σ denoting an activation
function, and Ã = A + I is the refined adjacency matrix
with self-connection. Besides, D̃ii =

∑
j Ãij , and W(l) is

a trainable weight matrix. GCN is capable of simultaneously
aggregating the feature and spatial information, which facili-
tates the exploitation of the latent connections between nodes
so as to learn a discriminative representation for a specific
task. Due to the effectiveness of GCN, various extensions
and variants of GCN have achieved desirable performance.
Li et al. [36] pointed out that the graph convolution of the
GCN was indeed a special form of Laplacian smoothing and
then provided solutions to improve the GCN model for semi-
supervised learning, which brought a deeper insight to under-
stand GCN. Jie et al. [28] interpreted graph convolution as an
integral transform of embedding functions under probability
measures and utilized Monte Carlo approaches to consis-
tently estimate integrals, leading to a batched training scheme
named FastGCN. To alleviate the unnecessary complexity and
redundant computation, Wu et al. [37] simplified GCN as
SGCN by successively removing nonlinearities and collapsing
weight matrices between consecutive layers, which yielded
up to two orders of magnitude speedup. Chiang et al. [38]
further presented a new GCN training algorithm for graph-
based models, which led to significantly improved memory
and computational efficiency. For employing the convolutional
neural networks directly, Gao et al. [39] proposed a learnable
graph convolutional layer to automatically transform generic
graphs to data of grid-like structures, which is conducted
through a k-largest node selection process. Although existing
GCN models have demonstrated satisfactory performance in
single-view graph data, there is still a great challenge to extend
GCN on multi-view data.

B. Multi-view Semi-Supervised Classification

As the rapid development of multimedia, data exist in more
complex and diverse forms, attributed to which multi-view
learning has become a hot topic. In the past decades, plenty
of multi-view methods have been devoted to semi-supervised
learning [16], [28], [29], [35], [40]. Nie et al. [41] proposed
a parameter-free multi-view learning algorithm with adaptive
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Fig. 1: The overview of the proposed IMvGCN, which establishes the connection between GCN and multi-view learning. The constructed
flexible graph filter achieves adjustable Laplacian smoothing, and orthogonal normalization constrains the weights to avoid trivial solutions,
allowing the network to benefit from orthogonality with its differentiability and generalization capability.

neighbors to jointly perform multi-view clustering and semi-
supervised classification and local manifold structure learning,
and further presented an auto-weight graph-oriented method
to automatically allocate ideal weight for each view in [16].
To simultaneously utilize the consensus and complementary
properties of multi-view data, Jia et al. [42] established a semi-
supervised multi-view deep discriminant representation learn-
ing model, and incorporated the orthogonality and adversarial
similarity constraints to reduce the redundancy of learned
representations. Besides, Wang et al. [29] found that sparse
regularizer learning is equivalent to learning a parameterized
activation function and built a differentiable and reusable neu-
ral network to learn data-driven sparse regularizers adaptively,
thus to learn a sparse representation for multi-view clustering
and semi-supervised classification. To take advantage of the
effectiveness of GCN, Li et al. [40] proposed a multi-view
semi-supervised learning model by adaptively exploiting the
graph information from the multiple views with combined
Laplacian matrices, which simultaneously unified co-training,
spectral graph information and the expressive power of neural
network into one framework.

III. THE PROPOSED METHOD

In this section, we first define the optimization problem
and then further formulate the proposed method. For better
understanding, we start with the introduction of some basic
notations used in this paper. Denote given multi-view data as
X = {Xv}Vv=1, where Xv = [x1; . . . ;xn] ∈ Rn×mv is the
data from v-th view for any v ∈ {1, . . . , V }, n is the number
of samples and V is the number of views.

A. Problem Formulation

Dimensionality reduction is a series of classical methods
mapping input samples onto a low-dimensional space. We
first consider the projection of X onto some low-dimensional
space and generate Z. However, directly mapping X onto a
low-dimensional space may lack generalization capability in
many realistic scenarios. In order to obtain an effective low-
dimensional representation, we introduce the reconstruction
error between the projected data Z and original data X, as
E = X−ZWT . To minimize the reconstruction error E, the
objective function can be defined as

min
Z,W

∥∥X− ZWT
∥∥2
F

s.t. WTW = I, (2)

where Z = [z1; . . . ; zn] ∈ Rn×k is the learned representation
of input data X ∈ Rn×m with W ∈ Rm×k being a standard
orthonormal basis. Equation (2) is for the single-view case, as
to the multi-view input X , the target is to learn a common
representation Z which is capable of extracting consistency
and independence information among views. We first consider
Equation (2) in each view, that is, calculate the reconstruction
loss with respect to the v-th view input Xv and Z. Then the
sum of the reconstruction error of each view is minimized
for the sake of capturing the consistent features across views.
Consequently, Equation (2) is extended to a multi-view case:

min
Z,Wv

V∑
v=1

∥∥Xv − ZWT
v

∥∥2
F

s.t. WT
v Wv = I, v ∈ {1, 2, . . . , V },

(3)

where Wv ∈ Rmv×k is the orthonormal basis of the v-th
view. Equation (3) explores a common latent space of various
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views, and projects the obtained representation Z onto the
original feature space with Wv . Although this method is
efficient for many real-world applications, it perceives the
transformation from the original space to the hidden space
as a linear projection. Namely, the method ignores the spatial
structure of input data, and it is inevitable to lose the inherent
nonlinear characteristics.

Building a graph on the input data, Laplacian embedding
preserves the intrinsic structure between data points in the low-
dimensional space. Herein, G = {X,A} denotes an undirected
graph, and A represents the adjacency matrix constructed
using k-nearest neighbors (KNN) algorithm. Therefore, the
(i, j)-th element of A can be formulated as

Aij =

{
1, xi ∈ KNN(xj) or xj ∈ KNN(xi),
0, otherwise,

(4)

where xi is the i-th row vector of X and KNN(xi) denotes
the set of k nearest neighbors of xi. With renormalized Â =
D− 1

2 (I+A)D− 1
2 , the Laplacian matrix can be calculated as

L̂ = I−Â, and the objective function of Laplacian embedding
can be specified by

min
Z

1

2

n∑
i,j=1

∥zi − zj∥22 Âij = min
Z

Tr
(
ZT L̂Z

)
, (5)

where zi denotes the representation of the i-th sample. By
adopting Equation (5), we aim to keep the connected nodes
in the predefined graph G close in the latent space. In other
words, Equation (5) preserves the local invariance on the
manifold structure. To overcome the aforementioned problems
of Equation (2), we consider Equation (5) while solving
Equation (2) to learn a better representation Z. Similar to
Equation (3), we first consider within-view invariance criterion
Tr
(
ZT L̂Z

)
to maintain the nonlinear structure in the feature

space, then capture the intrinsic manifold structure of each
view to learn a hidden embedding with consistent spatial
structure across views:

min
Z

V∑
v=1

Tr
(
ZT L̂vZ

)
, (6)

where L̂v is the Laplacian matrix constructed on the v-th
view input Xv . In fact, Equation (6) also suffers from the
problem of being overstrict. Meanwhile, as mentioned before,
a sample has diverse spatial structures in different views in
the case of multi-view data, which is ignored in Equation
(3). Accordingly, the two considerations are combined into
a framework addressing the aforementioned issues:

min
Z,Wv

V∑
v=1

∥∥Xv − ZWT
v

∥∥2
F
+ λ

V∑
v=1

Tr
(
ZT L̂vZ

)
s.t. WT

v Wv = I, v ∈ {1, 2, . . . , V },

(7)

where λ is a hyperparameter that balances the importance of
two terms, and Z denotes the learned common representation
for all views. By considering the reconstruction error along
with local invariance on manifold structure of multi-view
data {Xv}Vv=1, Equation (7) can be well adapted to multi-
view data containing different distributions in real scenarios.

The following subsection focuses on the optimization of this
problem and shows how it meets GCN.

B. Interpretable Multi-view GCN

In Problem (7), there are several optimization variables Z
and {Wv}Vv=1, hence an alternating method is adopted to
update them one by one. By fixing Wv , all Wv are regarded
as constants during the process of optimizing variable Z, and
Problem (7) is minimized over Z. Denoting Problem (7) as L
with fixed Wv , the gradient of L w.r.t. Z can be computed as

∂L
∂Z

= 2V

(
I+

λ

V

V∑
v=1

L̂v

)
Z− 2

V∑
v=1

XvWv. (8)

Letting Equation (8) equal to 0, we have(
I+

λ

V

V∑
v=1

L̂v

)
Z =

1

V

V∑
v=1

XvWv. (9)

Before proceeding to the next step of the derivation, we
analyze

(
I+ λ

V

∑V
v=1 L̂v

)
. For the symmetric adjacency ma-

trix A, its renormalized adjacency matrix is computed as
Â = D− 1

2 (I + A)D− 1
2 , and the symmetric normalized

Laplacian matrix L̂ = I − Â satisfies: (I + λL̂) is positive
definite when λ > − 1

2 . For detailed derivation, please refer to
Appendix A. Thus, the factor

(
I+ λ

V

∑V
v=1 L̂v

)
on the left

side of the Equation (9) can be transformed to(
I+

λ

V

V∑
v=1

L̂v

)
=

1

V

V∑
v=1

(Iv + λL̂v), (10)

where Iv is the v-th identity matrix. According to the analysis
above and the properties of positive definite matrices, each
(Iv+λL̂v) is positive definite and thus

∑V
v=1(Iv+λL̂v) is also

positive definite. Further, we multiply the inverse matrix of
positive definite

(
I+ λ

V

∑V
v=1 L̂v

)
on both sides of Equation

(9) simultaneously:

Z =

(
I+

λ

V

V∑
v=1

L̂v

)−1

1

V

V∑
v=1

XvWv. (11)

Here we obtain the optimal solution to Z. Then, the K-order

Taylor expansion of
(
I+ λ

V

∑V
v=1 L̂v

)−1

is

(
I+

λ

V

V∑
v=1

L̂v

)−1

≈
K∑
i=0

(
− λ

V

V∑
v=1

L̂v

)i

, (12)

where K is the order of this Taylor series. When K = 1, we
have the first-order truncated of this Taylor expansion:(

I+
λ

V

V∑
v=1

L̂v

)−1

≈ I− λ

V

V∑
v=1

L̂v. (13)

Here we set λ ∈ (− 1
2 ,

1
2 ] to guarantee that

∑V
v=1(Iv + λL̂v)

is positive definite and that the Taylor series is convergent
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simultaneously (refer to Appendix A). Moreover, Equation
(13) can be expanded to(

I+
λ

V

V∑
v=1

L̂v

)−1

≈ I− λ(I− 1

V

V∑
v=1

Âv)

= (1− λ)I+
λ

V

V∑
v=1

Âv,

(14)

where Âv is the renormalized adjacency matrix of the v-th
view. By using Âf = 1

V

∑V
v=1 Âv , we obtain the solution to

Z alternating
(
I+ λ

V

∑V
v=1 L̂v

)−1

with its first-order Taylor
approximation:

Z =
(
(1− λ)I+ λÂf

) 1

V

V∑
v=1

XvWv. (15)

Supported by the above derivations, we further establish a the-
oretical connection between multi-view representation learning
and GCN. When λ is close to 1, Equation (15) becomes

Z =
1

V

V∑
v=1

ÂfXvWv. (16)

With Âf being the sum of renormalized adjacency matrix, we
find that the simplified Equation (16) is the weighted average
formulation of forward propagation of GCN. In other words,
considering constructing a multi-view GCN, Equation (16) is
indeed a simple form of the forward propagation equation
for this model. In summary, the multi-view representation
learning defined in Problem (7) can then be solved by de-
signing a multi-view GCN. Following this, we return to the
discussion of Equation (15). Li et al. [36] have revealed that
the filter of GCN is actually a special form of Laplacian
smoothing aggregating features from neighbors of a node.
Thus, with the identity matrix adding an extra self-loop to Âf ,
hyperparameter λ controls the balance between strengthening
self features and collecting information from neighbor nodes.
And similar to the original GCN, truncating the expansion
of Taylor series to the first-order guarantees that a one-step
Laplacian smoothing only aggregates information from first-
order neighbors of a node. Accordingly, a filter is proposed
with flexible Laplacian smoothing, that is,

Ff = (1− λ)I+ λÂf . (17)

Here, we have Ff = Ugλ(Σ)U
T with gλ(Σ) = I − λΣ,

where U and Σ are obtained by 1
V

∑V
v=1 L̂v = UΣUT. It can

be observed that the response function gλ(Σ) changes with
λ. The common embedding Z is generated by the forward
computation of multi-view GCN, and naturally {Wv}Vv=1 can
be updated by the backward propagation. For the scalability,
we allow the scheme to be performed recursively within
views, and replace Xv with Hv . The multi-view module is
constructed with the following propagation rule:

Z =
1

V

V∑
v=1

FfHvWv, (18)

where Z is the learned embedding. By extending the flexible
Laplacian smoothing filter Ff to view-wise as

Fv = (1− λ)I+ λÂv, (19)

the forward propagation in the v-th view can be described as

H(l+1)
v = σ

(
FvH

(l)
v W(l)

v

)
, (20)

where H
(l)
v denotes the hidden feature, W(l)

v is the learnable
parameter of the v-th view in the l-th layer and σ is an acti-
vation function. As a simple example, the learned embedding
Z of a 3-layer model is calculated by

Z =
1

V

V∑
v=1

Ffσ
(
Fvσ

(
FvXvW

(0)
v

)
W(1)

v

)
W(2)

v . (21)

After completing the forward computation, Z is replaced with
the computed Z∗ and we consider obtaining the weights
{W(0)

v , . . . ,W
(L−1)
v }Vv=1. Since we construct a multi-layer

model, Wv in the original objective function is replaced as
Wv = W

(0)
v W

(1)
v W

(2)
v for approximation. It is obvious that

Wv is still orthogonal with WT
v Wv = I if each W

(l)
v satisfies

the orthonal constraint. Owing to the nonlinearity of the acti-
vation function, this approach is adopted to approximate the
original problem, and the following optimization is considered:

(W(l)
v )∗ = argmin

W
(l)
v

V∑
v=1

∥∥Xv − Z∗WT
v

∥∥2
F

+λ

V∑
v=1

Tr
(
(Z∗)T L̂vZ

∗
)

s.t.
(
W(l)

v

)T
W(l)

v = I,

v ∈ {1, 2, . . . , V }, l ∈ {0, 1, . . . , L− 1},

(22)

where Wv =
∏L−1

l=0 W
(l)
v , and for the Equation (21) it

is Wv = W
(0)
v W

(1)
v W

(2)
v here. As mentioned before, the

process of updating {W(0)
v , . . . ,W

(L−1)
v }Vv=1 is performed by

backward propagation, and the difficulty is how to preserve
orthogonality of W(l)

v . Therefore, we introduce a differentiable
orthogonal normalization method in Section III-C to achieve
strict orthogonality of W

(l)
v . Here we default that W

(l)
v

satisfies the orthogonal constraint, and the reconstruction error
with Laplacian embedding loss is formulated as

Lrl =

V∑
v=1

∥∥Xv − ZWT
v

∥∥2
F
+ λ

V∑
v=1

Tr
(
ZT L̂vZ

)
. (23)

Up to here, Problem (7) is solved by establishing a GCN-
based multi-view neural network. Nonetheless, from another
perspective, the capabilities of GCN are not fully explored.
Many studies have found that the power of the GCN is owed to
that it can efficiently propagate label signals by utilizing topo-
logical information. Relying on only the above two losses will
substantially damage this ability of the proposed framework.
Therein, the cross-entropy function is introduced to motivate
the flow of label information:

Lc = −
∑
i∈Ω

c∑
j=1

Yij logŶij , (24)
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where Y ∈ R|Ω|×c is the label matrix generated from the set
Ω which is a tiny part of the entire label space, and Ŷ =
softmax(Z) denotes the predicted labels. It is highlighted
that, induced by the unsupervised multi-view problem, the
model structurally approximates the optimization, enhancing
its capacity in scenarios with extremely limited labels.

C. Orthogonal Normalization

In this subsection, we focus on the orthogonal constraint
of {Wv}Vv=1, which is a key point of the proposed method.
Although the solution for {Wv}Vv=1 can be obtained using
the aforementioned multi-view framework, it will deviate the
designed framework from the original multi-view learning
problem. To be specific, the forward computation can be
regarded as performing the propagation F(v)H(v) and the
transformation F(v)H(v)W(v). With the orthogonal constraint
on {Wv}Vv=1, the transformation is indeed projecting the
feature onto a low-dimensional space under the guidance of
the original objective. The advantages are two-fold: Firstly,
the network retains the interpretability, which originates from
the traditional multi-view problem; meanwhile, the learning
of {Wv}Vv=1 is not over-restricted by the problem and is
updated in a data-driven way where the task-oriented loss can
be introduced, which originates from the deep learning. As a
result, keeping the connection with the original unsupervised
objective helps to capture consistent and complementary in-
formation from multiple views. Consequently, the designed
framework can learn a more discriminative consistent repre-
sentation when the labeled samples are scarce, which is the
essential goal of multi-view semi-supervised learning.

Inherently, how to achieve this is a well-known dilemma
in deep learning due to the difficulty of orthogonality preser-
vation, and the relaxed orthogonal constraints were used in
many previous works. For the sake of theoretical strictness and
avoiding trivial solutions, we do not take any method to relax
the constraint, such as transforming it into reconstruction loss.
In the following part, a normalization approach is proposed to
ensure strict orthogonality and provide theoretical guarantees
for its feasibility. Note that the proposed orthogonal normaliza-
tion method can be plugged into other neural networks rather
than limited to the present framework.

Theorem 1: Given matrix A ∈ Rd1×d2 , suppose that ATA
can be decomposed as ATA = UUT where U ∈ Rd2×d2

is an invertible matrix, we have the constructed matrix B =
A
(
U−1

)T
satisfing BTB = I.

Proof: For matrix decomposition ATA = UUT , we have

U−1ATA
(
U−1

)T
= I, (25)

as U is invertible. Then, by constructing B = A
(
U−1

)T
, it

can be concluded that B satisfies the orthogonal constraint, as
shown below:

BTB = (A(U−1)T )T (A
(
U−1

)T
)

= U−1UUT
(
U−1

)T
= I.

(26)

According to Theorem 1, we can conduct different types
of matrix decomposition on ATA to obtain an orthogonal

matrix. For example, we have U = VΣ− 1
2 when performing

eigenvalue decomposition ATA = VΣVT . For Cholesky
decomposition ATA = LLT , we have U = L. In this paper,
we adopt Cholesky decomposition. To be specific, suppose
that ATA is full rank with the given matrix A ∈ Rd1×d2 ,
then the Cholesky decomposition can be performed on ATA
as ATA = UUT , where U ∈ Rd2×d2 is a lower triangular
matrix and UT is an upper triangular. In practice, the full
rank of ATA can be achieved by adding small numbers to its
diagonal elements. In summary, we can set a variable A called
proxy variable, and perform matrix decomposition on it and
obtain projection matrix U, then A is projected to B, which
is the true variable employed to conduct forward computation.
Now we have the method to solve orthogonal constraints in
deep learning, but there are still some problems.

Theorem 2: Given B satisfying BTB = I, the construction
is not unique and there are infinite matrices C = BR that
satisfy CTC = I, where R is any arbitrary matrix.

Proof: Setting C = BR where R ∈ Rd2×d2 is an
arbitrary orthogonal matrix, CTC = I is supported by

CTC = RTBTBR = RTR = I, (27)

with the premise that BTB = I and RTR = I.
According to Theorem 2, the construction method is more

generally defined as C = A
(
U−1

)T
R with R being an

arbitrary orthogonal matrix. It can be clearly observed that the
construction of C is indeed a linear projection on A. Thus, to
find the optimal C, we naturally want to optimize

min
R

∥A−C∥2F

s.t. C =A
(
U−1

)T
R,CTC = I.

(28)

By a series of derivations (refer to Appendix B), Equation (28)
can be transformed into

max
R

Tr (UR) =

d2∑
i=1

UiiRii, s.t. RTR = I (29)

where Uii and Rii are the elements on the diagonals of Uii

and Rii respectively. The norm of each row or column vector
of R is 1 because R is an orthogonal matrix, thereby it is
evident that the solution of R is that R∗ = I. Replacing R
with R∗, the optimal solution of C is

C∗ = A
(
U−1

)T
. (30)

Analysis above theoretically proves the feasibility and rea-
sonableness of the proposed method, and we apply the orthog-
onal normalization formulated by Equation (30) to preserve
orthogonality of each weight matrix W

(l)
v . Specifically, we

define a parameter matrix S
(l)
v and construct W(l)

v as

W(l)
v = S(l)

v ((U(l)
v )−1)T , (31)

where ((U
(l)
v )−1)T is obtained by performing Cholesky de-

composition on (S
(l)
v )TS

(l)
v :

(S(l)
v )TS(l)

v = U(l)
v (U(l)

v )T . (32)

Note that, backward propagation requires calculating the
derivative of projection W

(l)
v = S

(l)
v ((U

(l)
v )−1)T during the
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Algorithm 1 IMvGCN
Input: Multi-view data {X1, . . . ,XV }, semi-supervised infor-
mation Y, hyperparameters λ and α.
Output: The fused embedding Z.

1: Generate adjacency matrices {Â1, . . . , ÂV };
2: while not converge or the framework does not meet the

early stop condition do
3: for v = 0 → V do
4: for l = 1 → L do
5: Compute Fv or Ff with (19) or (17);
6: Perform Cholesky decomposition on (S

(l)
v )TS

(l)
v to

obtain ((U
(l)
v )−1)T ;

7: Calculate W
(l)
v with (31);

8: Compute H
(l+1)
v with (20);

9: end for
10: end for
11: Calculate the common embedding Z with (18);
12: Update parameter matrices {S(l)

1 , . . . ,S
(l)
V } with back-

ward propagation;
13: end while
14: return The fused representation Z.

training process. The derivative of W
(l)
v with respect to

S
(l)
v can be computed since the gradient information can

be transferred through Cholesky decomposition [43], and the
same conclusion holds for eigenvalue decomposition [30].
Therefore, when using a differentiable matrix decomposition
method, the proposed orthogonal normalization module is
differentiable, and the derivative of the loss function with
respect to S

(l)
v can be calculated by the chain rule, as

∂L
∂S

(l)
v

=
(

∂W(l)
v

∂S
(l)
v

)T
∂L

∂W
(l)
v

. As discussed above, orthogonal
normalization ensures a stronger link between original multi-
view learning problem and the proposed IMvGCN, thereby
further bolstering the performance in label-scare scenarios,
which is soon validated by the experimental results. Finally,
training details and the computational complexity of the pro-
posed framework are described in the following subsection.

D. Training Details

Combining Equations (23) and (24), the proposed IMvGCN
is trained using the following objective function:

L = Lc + αLrl, (33)

where α is a hyperparameter balancing the two terms. Al-
gorithm 1 depicts the procedure of IMvGCN. Generally, the
procedure contains within-view propagation and the fusion of
the embeddings obtained from each view.

We also analyze the complexity of the forward cal-
culation of IMvGCN. Firstly, we consider the computa-
tional complexity of IMvGCN without the Taylor approxi-
mation. In this case, the forward computation includes three
main parts, that is, matrix inversion, Cholesky decomposi-

tion and matrix multiplications. For
(
I+ λ

V

∑V
v=1 L̂v

)−1

∈
Rn×n, the computational complexity of matrix inversion

TABLE I: Detailed statistics of all datasets.

Datasets # Samples # Views Feature Distributions # Classes

3Sources 169 3 3, 560/3, 631/3, 068 6
Animals 10, 158 2 4, 096/4, 096 50

Caltech101 9, 144 6 48/40/254/1, 984/512/928 101
Citeseer 3, 312 2 3, 703/3, 312 6
GRAZ02 1, 476 6 512/32/256/500/500/680 4

NGs 500 3 2, 000/2, 000/2, 000 5
MNIST 2, 000 3 30/9/9 10

Out-Scene 2, 688 4 512/432/256/45 8
NoisyMNIST 30, 000 2 784/784 10

Reuters 18, 758 5 21, 531/24, 892/34, 251/15, 506/11, 547 6

is O(n3). Then the complexity of Cholesky decompo-
sition performed on (W

(l)
v )TW

(l)
v ∈ Rd(l+1)

v ×d(l+1)
v is

O
((

d
(l+1)
v

)3)
, and it is O

(
n2d

(l)
v + nd

(l)
v d

(l+1)
v

)
for ma-

trix multiplications. Thus, for the l-th layer in the v-th
view, it requires O

(
n3 + n2d

(l)
v + nd

(l)
v d

(l+1)
v +

(
d
(l+1)
v

)3)
.

Denoting the maximum value of hidden dimension set
{d(1)v , d

(2)
v , . . . , d

(L)
v }Vv=1 as d, we have O(n3 + n2d +

nd2 + d3) for all layers. In particular, the complexity is
O
(
n3 + n2m+ nmd+ d3

)
for the first layer of the v-th

view, where m is the maximum input feature dimension
among all views. Owing to d ≪ min{m,n}, the total
computation requires O(V n2(Ln + m)) when we build an
L-layer network for each of the V views. Subsequently, we
calculate the computational complexity of IMvGCN using
Taylor approximation. As we do not need to perform the
matrix inversion, the computational complexity for each layer
is reduced to O(n2d + nd2 + d3) and it can be simplified
as O(n2m + nmd + d3) for the first layer. Consequently,
the forward computation complexity of IMvGCN consumes
O(V n2(Ld+m)).

IV. EXPERIMENT

In this section, the proposed framework IMvGCN is com-
pared with nine methods on eight real-world benchmark
datasets. We first describe the datasets and experimental set-
tings, then demonstrate the performance of IMvGCN. More-
over, comprehensive experiments are conducted to analyze its
convergence and parameter sensitivity.

A. Experimental Settings

Eight public benchmark datasets with multiple descrip-
tions of samples are utilized to perform multi-view semi-
supervised classification tasks: 3Sources2, Animals, Cal-
tech1013, GRAZ024, NGs5, MNIST, Out-Scene, NoisyM-
NIST6 and Reuters7. A summary of statistics about these
datasets is recorded in Table I. The detailed description is
given as follows.

3Sources is a textual dataset containing news from three
sources: BBC, Reuters and Guardian. We select 169 stories
reported by three companies to constitute three-view data.

2http://mlg.ucd.ie/datasets/3sources.html
3http://www.vision.caltech.edu/ImageDatasets/Caltech101/Caltech101.html
4http://www.emt.tugraz.at/∼pinz/data/GRAZ 02
5http://www.qwone.com/∼jason/20Newsgroups
6https://github.com/nineleven/NoisyMNISTDetection
7https://www.kaggle.com/datasets/nltkdata/reuter
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TABLE II: Comparison results (mean% and standard deviation%) of all compared methods with 1% and 5% labeled samples, where the best
results are highlighted in red and the second best results are highlighted in blue. AMGL fails to work on some datasets, which are marked
with “—” in the table, and OOM denotes the out-of-memory error.

Ratio Datasets Metrics KNN AMGL MVAR MLAN AWDR HLR-M2VS GCN-Fusion Co-GCN DSRL Ours

1%

3Sources ACC 35.7 (10.9) 52.0 (8.9) 23.2 (11.1) 32.8 (4.0) 22.3 (13.1) 22.9 (10.9) 53.9 (10.4) 45.4 (5.1) 33.2 (0.2) 84.1 (0.1)
F1 16.7 (6.6) 48.9 (6.8) 12.4 (8.4) 13.8 (8.3) 5.8 (3.1) 6.0 (2.5) 23.2 (4.2) 21.1 (4.8) 8.3 (0.0) 81.9 (0.6)

Animals ACC 55.3 (1.0) 52.4 (1.3) 43.2 (2.9) 51.7 (6.8) 55.0 (4.0) 46.5 (2.0) 60.4 (2.0) 55.9 (6.1) 53.4 (2.9) 70.4 (0.1)
F1 42.5 (0.8) 48.0 (1.7) 38.5 (2.8) 46.4 (4.9) 43.3 (3.4) 42.3 (1.7) 53.3 (2.4) 42.4 (5.3) 43.3 (3.9) 62.0 (0.1)

Caltech101 ACC 18.8 (0.9) 33.3 (0.6) 23.5 (2.2) 17.1 (2.6) 16.8 (1.3) 29.9 (1.9) 38.0 (1.1) 24.7 (3.2) 36.1 (1.3) 40.1 (0.3)
F1 5.7 (0.6) 15.7 (1.5) 5.2 (0.7) 1.9 (0.2) 3.4 (0.5) 8.3 (1.1) 14.0 (1.4) 7.2 (1.4) 10.6 (1.3) 15.9 (0.2)

Citeseer ACC 20.2 (3.4) — 20.5 (1.4) 43.9 (6.5) 35.1 (4.3) 36.5 (3.2) 46.3 (2.9) 35.1 (2.7) 49.3 (2.5) 61.0 (0.3)
F1 27.8 (1.0) — 26.5 (0.8) 36.9 (5.1) 37.6 (2.3) 38.6 (5.0) 38.1 (2.8) 29.1 (2.2) 43.2 (1.7) 55.8 (0.3)

GRAZ02 ACC 30.6 (4.5) 38.5 (2.6) 34.6 (3.6) 30.2 (2.0) 37.7 (5.2) 49.7 (12.4) 45.3 (3.8) 37.8 (7.3) 41.2 (1.4) 51.5 (0.1)
F1 31.2 (5.3) 40.3 (2.6) 28.9 (7.3) 34.7 (4.0) 37.5 (5.3) 43.9 (14.6) 44.9 (5.1) 34.2 (7.7) 39.9 (2.9) 49.7 (0.1)

NGs ACC 23.7 (2.1) — 20.1 (0.3) 61.1 (13.9) 23.0 (2.5) 26.1 (5.0) 83.1 (8.1) 55.8 (9.5) 56.9 (6.3) 90.5 (0.0)
F1 27.3 (6.4) — 20.2 (10.2) 68.4 (10.1) 29.3 (4.8) 28.6 (6.5) 81.8 (10.2) 47.5 (10.5) 49.8 (10.2) 90.5 (0.0)

MNIST ACC 37.2 (2.9) 45.9 (4.3) 52.3 (8.7) 57.4 (3.8) 46.7 (4.1) 33.1 (9.6) 77.4 (1.7) 80.5 (0.9) 67.1 (8.3) 88.4 (0.3)
F1 31.7 (4.5) 46.7 (6.0) 48.2 (4.8) 56.8 (2.9) 42.8 (4.3) 35.8 (8.4) 74.3 (2.3) 78.0 (0.7) 56.0 (12.5) 85.7 (0.7)

Out-Scene ACC 38.6 (3.3) 47.0 (2.2) 28.9 (4.8) 23.9 (1.5) 35.2 (1.3) 29.4 (5.5) 59.3 (2.1) 55.2 (2.3) 49.7 (3.1) 65.0 (0.6)
F1 38.4 (3.4) 51.6 (2.2) 31.6 (3.4) 22.8 (9.3) 32.6 (3.6) 38.0 (5.5) 60.2 (2.5) 54.9 (4.1) 47.0 (3.9) 64.6 (0.6)

NoisyMNIST ACC 75.1 (1.0) 89.8 (1.7) 59.1 (1.9) OOM 70.0 (0.9) OOM 79.0 (1.3) 74.6 (3.6) OOM 90.4 (0.3)
F1 75.4 (1.0) 89.8 (1.8) 58.5 (1.5) OOM 69.7 (0.5) OOM 79.0 (1.3) 72.3 (4.2) OOM 90.2 (0.4)

Reuters ACC 37.0 (0.0) — 72.3 (0.0) OOM OOM OOM 74.4 (1.0) 75.9 (2.5) OOM 79.9 (0.5)
F1 40.9 (0.0) — 68.7 (0.0) OOM OOM OOM 70.1 (0.8) 62.1 (4.9) OOM 76.1 (0.7)

5%

3Sources ACC 41.5 (8.7) 58.8 (10.3) 36.4 (10.9) 62.2 (11.0) 27.6 (10.3) 63.4 (14.0) 85.8 (5.1) 71.3 (0.9) 63.6 (5.3) 92.5 (0.2)
F1 31.1 (12.8) 48.1 (7.8) 17.8 (7.1) 41.9 (12.4) 8.5 (4.6) 50.8 (22.8) 76.6 (9.8) 53.5 (2.6) 41.5 (3.5) 89.7 (0.5)

Animals ACC 69.5 (1.0) 66.3 (0.7) 78.0 (1.1) 78.8 (0.7) 79.3 (0.7) 66.3 (1.2) 75.8 (0.7) 79.0 (0.4) 73.8 (0.7) 81.6 (0.1)
F1 64.6 (1.5) 60.5 (0.8) 73.0 (1.1) 72.9 (1.0) 72.6 (0.9) 62.2 (1.4) 67.7 (1.0) 72.2 (0.5) 67.0 (1.7) 74.8 (0.2)

Caltech101 ACC 26.7 (0.8) 42.0 (0.5) 44.3 (1.0) 35.6 (0.1) 37.2 (0.7) 41.5 (1.7) 47.8 (0.7) 29.3 (1.0) 48.8 (0.6) 51.7 (0.2)
F1 11.2 (0.6) 25.1 (0.7) 25.1 (1.4) 16.9 (0.7) 16.6 (0.7) 24.6 (1.6) 27.4 (0.5) 14.6 (0.6) 27.8 (1.2) 30.7 (0.2)

Citeseer ACC 24.9 (6.3) — 63.1 (1.2) 62.3 (4.5) 62.0 (1.4) 52.0 (2.9) 60.0 (1.1) 49.9 (0.4) 58.8 (1.8) 70.9 (0.1)
F1 32.1 (2.3) — 59.2 (1.9) 59.2 (2.3) 57.5 (0.9) 50.5 (1.7) 52.4 (0.5) 44.5 (0.3) 53.8 (1.7) 65.6 (0.3)

GRAZ02 ACC 41.4 (2.2) 50.9 (1.5) 49.0 (3.8) 50.2 (6.3) 40.9 (1.2) 45.2 (5.5) 53.1 (2.6) 38.0 (0.7) 46.9 (3.5) 58.6 (0.6)
F1 41.6 (2.1) 51.7 (1.6) 50.5 (3.6) 52.4 (2.7) 40.5 (1.5) 48.7 (4.4) 53.6 (2.7) 37.6 (0.6) 47.1 (3.7) 58.7 (0.7)

NGs ACC 34.6 (8.1) — 29.1 (9.1) 93.8 (1.1) 54.1 (5.4) 59.9 (11.1) 92.7 (1.4) 83.9 (0.3) 71.4 (2.8) 97.5 (0.1)
F1 45.7 (7.0) — 40.5 (9.4) 93.9 (1.1) 62.9 (5.7) 65.6 (9.1) 92.7 (1.4) 83.7 (0.3) 71.7 (2.8) 97.5 (0.1)

MNIST ACC 57.7 (1.9) 65.9 (2.3) 78.2 (3.9) 85.6 (1.2) 66.4 (4.8) 67.0 (6.4) 83.5 (1.2) 85.4 (2.3) 86.7 (1.2) 90.8 (0.3)
F1 54.3 (1.7) 67.1 (1.9) 76.3 (4.7) 82.7 (1.4) 65.3 (3.6) 68.4 (4.0) 81.1 (1.2) 83.5 (2.3) 83.0 (3.1) 88.6 (0.2)

Out-Scene ACC 46.4 (1.8) 64.2 (1.5) 42.5 (1.5) 69.0 (2.0) 52.9 (1.6) 63.0 (4.0) 69.6 (1.2) 69.0 (0.5) 61.9 (2.0) 74.3 (0.3)
F1 47.6 (1.8) 66.0 (1.4) 44.5 (1.9) 72.5 (1.6) 54.3 (1.4) 66.7 (2.4) 69.9 (1.4) 69.4 (0.5) 62.5 (2.0) 74.5 (0.3)

NoisyMNIST ACC 85.3 (0.5) 93.9 (1.1) 73.3 (0.8) OOM 76.2 (0.5) OOM 90.2 (1.8) 88.9 (2.3) OOM 94.6 (0.4)
F1 85.4 (0.4) 93.9 (1.1) 72.7 (0.7) OOM 75.9 (0.5) OOM 90.1 (1.5) 88.2 (1.8) OOM 94.4 (0.4)

Reuters ACC 41.2 (0.0) — 82.3 (0.0) OOM OOM OOM 81.2 (0.4) 81.2 (2.2) OOM 84.2 (0.0)
F1 46.7 (0.0) — 80.0 (0.0) OOM OOM OOM 79.0 (0.4) 72.0 (4.4) OOM 81.7 (0.0)

Animals consists of 30,475 animal images divided into 50
categories. We generate a subset containing 10,158 samples,
that is, 1/3 samples per class selected from Animals. And
two types of features are extracted from these images using
DECAF and VGG19.

Caltech101 is a widely used object recognition dataset
containing 101 classes of images. Six features extracted from
the original images constitute the data from six views: 48-D
Gabor feature, 40-D wavelet moments (WN), 254-D CEN-
TRIST feature, 1,984-D HOG feature, 512-D GIST feature,
and 928-D LBP feature.

Citeseer is a research paper dataset with 3,312 samples that
are classified into 6 categories. Adopting the setup of [44], we
generate 3,703-D bag-of-words vectors as the first view and
3,312-D vectors representing the citation relationships between
documents as the second view.

GRAZ02 is a dataset for object categorization with four
classes of images: bicycles, people, cars, and a class that does
not contain these objects. The following 6 types of features
are extracted: SIFT, SURF, GIST, LBP, PHOG and WT.

NGs is a subset of the 20 Newsgroup datasets that is

a collection of approximately 20,000 newsgroup documents.
NGs consists of 500 newsgroup documents in 5 classes, and
each document is pre-processed with three different methods
as three views.

MNIST is a well-known handwritten digit dataset, where
three types of features are extracted: 30-D IsoProjection,
9-D Linear Discriminant Analysis and 9-D Neighborhood
Preserving Embedding features.

Out-Scene has 2,688 images in 8 groups. For each image,
we extract 512-D GIST feature, 432-D color moment feature,
256-D HOG feature and 48-D LBP feature.

NoisyMNIST contains 30,000 images. It is generated by
adding the white Gaussian noise, the motion blur and a
combination of additive white Gaussian noise and reduced
contrast to MNIST dataset.

Reuters consists of 18,758 documents in 6 categories. Each
document is written in five different languages, including
English, French, German, Italian and Spanish.

For validation of the proposed framework, we compare our
approach with several classical and state-of-the-art algorithms
in the multi-view semi-supervised classification task, including
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(a) 3Sources

(e) GRAZ02

(b) Animals

(f) NGs

(c) Caltech101

(g) MNIST

(d) Citeseer

(h) Out-Scene

Fig. 2: Curves of train loss value (blue), testing accuracy (red) and F1-score (green) on all datasets (with 5% labeled samples).

(a) 3Sources (b) Animals (c) Caltech101 (d) Citeseer

(e) GRAZ02 (f) NGs (g) MNIST (h) Out-Scene

Fig. 3: The various performance (accuracy) of all compared methods on all test datasets. The ratio of labeled samples ranges in
{0.05, 0.10, . . . , 0.50}.

KNN, AMGL [44], MVAR [45], MLAN [41], AWDR [46],
HLR-M2VS [47], GCN-Fusion [23], Co-GCN [40] and DSRL
[29]. The description of these methods and some detailed
settings are given below.

KNN is a classical algorithm that utilizes k nearest training
samples to conduct classification. The number of neighbors k
is selected from the set {1, 3, 5, 7, 9}.

AMGL is a framework that automatically learns an optimal
weight for each view. Note that it is parameter-free.

MVAR combines weighted regression based losses com-
puted by ℓ2,1 norm in all views. We tune the trade-off weight

for each view as λ = 1000, and the redistribution parameter r
over views is fixed as 2.

MLAN integrates clustering and semi-supervised classifi-
cation into a unified framework by learning local structure
representations. The number of adaptive neighbors is tuned in
[1, 10] to find the best performance on diverse datasets.

AWDR is a supervised multi-view learning algorithm as-
signing the learned optimal weights to features from various
views. The trade-off parameter λ is set as 1.0.

HLR-M2VS explores the global consensus constraint and
local geometrical regularization for nonlinear subspace learn-
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(a) 3Sources (b) Animals (c) Caltech101 (d) Citeseer

(e) GRAZ02 (f) NGs (g) MNIST (h) Out-Scene

Fig. 4: Parameter sensitivity demonstration of the proposed method on datasets with accuracy.

TABLE III: Ablation study (mean% and standard deviation%) of the proposed method on all datasets, where ON is Orthogonal Normalization
and the experiment is conducted with 5% labeled samples.

Datasets Lrl ON ACC F1 Datasets Lrl ON ACC F1

3Sources

87.0 (0.9) 79.6 (0.9)

GRAZ02

56.5 (0.9) 56.7 (0.9)
✓ 87.9 (1.8) 84.5 (2.7) ✓ 57.4 (0.8) 57.2 (0.7)

✓ 91.8 (0.2) 84.1 (1.7) ✓ 57.2 (1.1) 57.5 (1.0)
✓ ✓ 92.5 (0.2) 89.7 (0.5) ✓ ✓ 58.6 (0.6) 58.7 (0.7)

Animals

74.1 (0.2) 68.8 (0.3)

NGs

96.4 (0.2) 96.4 (0.2)
✓ 79.7 (0.2) 71.7 (0.2) ✓ 96.9 (0.1) 96.9 (0.1)

✓ 78.6 (0.0) 73.8 (0.0) ✓ 96.6 (0.1) 96.5 (0.1)
✓ ✓ 81.6 (0.1) 74.8 (0.2) ✓ ✓ 97.5 (0.1) 97.5 (0.1)

Caltech101

40.4 (0.6) 21.2 (1.3)

MNIST

82.9 (3.3) 78.9 (3.2)
✓ 48.1 (0.2) 25.6 (0.6) ✓ 88.3 (0.7) 86.4 (1.1)

✓ 48.3 (0.0) 26.6 (0.1) ✓ 89.2 (0.2) 86.9 (0.2)
✓ ✓ 51.7 (0.2) 30.7 (0.2) ✓ ✓ 90.8 (0.3) 88.6 (0.2)

Citeseer

65.3 (0.6) 60.7 (0.7)

Out-Scene

69.8 (2.5) 69.7 (4.1)
✓ 66.4 (1.7) 60.5 (1.2) ✓ 71.1 (1.4) 70.6 (1.5)

✓ 70.4 (0.0) 65.5 (0.0) ✓ 70.4 (0.2) 69.8 (0.2)
✓ ✓ 70.9 (0.1) 65.6 (0.3) ✓ ✓ 74.3 (0.3) 74.5 (0.3)

ing simultaneously. We select the weighted factors as λ1 = 0.2
and λ2 = 0.4.

GCN-Fusion is based on the GCN model that copes with
multi-view data. We construct the average adjacency matrix
for model initialization and utilize a 2-layer GCN in our
experiments, with the learning rate as 0.001.

Co-GCN is a GCN-based method exploiting the graph
information from multiple views through an adaptive com-
bination of graph Laplacian matrices. Note that the settings of
the graph convolutional layers and learning rate are the same
as those in GCN fusion.

DSRL is an end-to-end framework, which builds a neural
network with multiple blocks containing learnable activation
functions. The number of layers is fixed as 10.

As for the proposed IMvGCN, Adam optimizer is applied
to update the learnable parameters, and the learning rate is
set to 1 × 10−2. A 3-layer neural network is employed in

the framework. As we stop training when the loss converges,
the maximum number of iterations of each dataset varies.
The sizes of the hidden units are determined by the feature
dimensions of datasets, and the dimensions of output repre-
sentations are divided by 4 layer by layer. The hyperparameter
λ is fixed as 0.5 for all the datasets. Due to the fact that the
loss term Lrl is usually much larger than the cross-entropy
loss, the balance hyperparameter α is selected in the range
{1×10−4, 1×10−5, 1×10−6}. Besides, we adopt tanh(·) as
the activation function of IMvGCN in all the experiments.
For the KNN algorithm used to construct the adjacency
matrices, hyperparameter k takes values ranging from 5 to
15. In this paper, the proposed framework is implemented by
PyTorch platform and runs on the computer with AMD R9-
5900X CPU, Nvidia RTX 3060 GPU, Nvidia RTX 3090 GPU
(NoisyMNIST and Reuters) and 72G RAM.
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Fig. 5: Visualization of (W(l)
v )TW

(l)
v in some layers of the framework, where each W

(l)
v is learned on 3Sources. (a), (b) and (c) are without

the orthogonal normalization, while (d), (e) and (f) are with it.

B. Multi-view Semi-supervised Classification

Performance Comparison: We conduct substantial experi-
ments comparing IMvGCN with the selected nine approaches
in multi-view semi-supervised classification tasks. Figure 2
illustrates the curves of IMvGCN in terms of loss values,
accuracy and F1-score during the training procedure. It points
out that the loss values of IMvGCN converge rapidly, and
both accuracy and F1-score maintain stable after convergence.
Performance of all the methods with 1% and 5% labeled
samples is reported in Table II, which means only 1% or 5%
labels are used to calculate the loss during training, and the
rest 99% or 95% samples are used to verify the performance.
For ease of observation, we highlight the best and the second
best results in red and blue, respectively.

As can be seen, the shallow and deep models show ad-
vantages on different datasets respectively, while IMvGCN
gains a large advantage over the compared algorithms on
all datasets. Most of the selected methods are graph-oriented
methods, where AMGL, MLAN and HLR-M2VS are shallow
models while GCN-Fusion and Co-GCN are both GCN-based
methods, and they outperform the other methods on most of
the datasets, suggesting the superiority of the graph-oriented
methods. In particular, the two GCN-based methods exhibit re-
markable performance. Nevertheless, the proposed framework
still significantly surpasses these GCN-based methods, which
reveals that the proposed flexible filter is more effective and
gains stronger generalization capability than the original filter.

It can also be noticed that IMvGCN performs stably with only
1% labeled samples, even surpasses the second-place GCN-
Fusion by more than 30% on 3Sources, which can be attributed
to the reconstruction error with Laplacian embedding loss.
When the labels are rare, the cross-entropy loss can only rely
on limited supervised information, while the reconstruction
error and Laplacian embedding loss do not require supervision
and can explore the feature space well to compensate for the
deficiency of cross-entropy loss. Similar conclusions can be
drawn from the observations of Figure 3, where we illustrate
the accuracy of IMvGCN with various ratios of labeled
samples (the figure with respect to F1-score is provided in
Appendix C). Besides, the performance of all methods varies
considerably at low ratios but tends to be comparable as the
ratio increases. And IMvGCN gains a remarkable edge over
other methods when the supervised information is scarce,
which is quite worthwhile. In a nutshell, the experimental
results indicate that the established connection between the
multi-view learning problem and GCN endows IMvGCN with
strong robustness.

Parameter Sensitivity: The effects of hyperparameters
α and λ are illustrated in Figure 4, and the results with
respect to F1-score is provided in Appendix C. According
to the observations, it can be concluded that the selection
of these two hyperparameters has a remarkable influence on
classification performance. More specifically, accuracy and F1-
score are at lower levels when the parameter α is too large,
while they are more stable when parameter α is less than
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Fig. 6: All methods’ runtime on two large-scale datasets (KNN,
AMGL, MVAR, MLAN, AWDR and HLR-M2VS are run on CPU,
and the other four are run on GPU). Some methods encounter errors
and the runtimes can not be plotted.

1 × 10−4. Nonetheless, a small value of parameter α also
leads to performance degradation, thus the suggested value
for α is between 1 × 10−6 and 1 × 10−4. In addition, the
performance of the model is relatively stable with different
values of parameter λ. In general, smaller values of λ result in
poorer performance, and peak performance is usually achieved
with moderate or large values of λ in [0.5, 0.8].

Ablation Study: We also validate the effectiveness of the
proposed orthogonal normalization approach and loss term Lrl

on all datasets. Table III records the experimental results of
ablation study. It can be observed that by simultaneously using
orthogonal normalization and loss Lrl, the proposed method
achieves the best performance in terms of both accuracy and
F1-score. Besides, using one of the two individually results
in a smaller performance gain. Observations indicate that
orthogonal normalization and Lrl improve the performance
and robustness of the framework substantially.

Further, we visualize (W
(l)
v )TW

(l)
v with and without or-

thogonal normalization of the weight W(l)
v . Figure 5 illustrates

that the diagonal elements of the matrix (W
(l)
v )TW

(l)
v with

normalized W
(l)
v are approximately 1 while the values at other

positions are approximately 0. In other words, the experimental
results validate the effectiveness of the proposed orthogonal
normalization approach. Moreover, the observations also indi-
cate that the orthogonal W(l)

v satisfies
∥∥∥(W(l)

v )i

∥∥∥ = 1 where

(w
(l)
v )i is the i-th row vector of W

(l)
v , so it stabilizes the

forward and backward propagation of neural networks. As all
weights trained on all datasets can achieve similar results, we
simply exhibit an example of W

(2)
0 , W(2)

1 and W
(2)
2 trained

by the proposed framework on 3Sources dataset, which are
relatively small and appropriate for visualization.

Runtime Comparison: Fig. 6 collects the training time
(i.e., runtime) of all methods on two selected large datasets,
i.e., NoisyMNIST (large sample size) and Reuters (large
feature size). Note that, the first six methods are implemented
by Matlab and run on CPU, called shallow methods, and the
other four are implemented by Pytorch and run on GPU, called
deep methods. So the comparison between the two groups

is only for reference. Besides, some methods fail to work
with the out-of-memory error so we can not plot the columns
corresponding to them. As exhibited in the figure, AMGL
and MVAR run more slowly than other shallow methods, and
KNN is greatly influenced by the dimensionality. Among deep
methods, DSRL suffers from out-of-time error, taking over
24 hours, and Co-GCN’s runtime is similar to the shallow
method. Considering it is accelerated by GPU, the result is
undesired. We find that IMvGCN requires much less time than
Co-GCN and DSRL. It has moderately low time complexity
while performing better than competitors.

V. CONCLUSION

In this paper, we propose an end-to-end framework dubbed
IMvGCN, which constructs a flexible graph filter and intro-
duces the orthogonal normalization to further improve the in-
terpretability of neural networks. We first design a multi-view
learning problem, where reconstruction error and Laplacian
embedding loss are integrated and extended to the multi-view
case. Inspired by this problem, a series of derivations are
conducted to establish the mathematical connection between
multi-view learning and GCN. In addition, the absence or re-
laxation of constraints often limits the interpretability of deep
model, and we propose an orthogonal normalization method to
achieve strict orthogonality in deep learning, which is general
enough to be adopted in more other models rather than just
IMvGCN. Finally, we apply IMvGCN to multi-view semi-
supervised classification tasks and validate its effectiveness
through comprehensive experiments.

Several potential topics about multi-view learning and GCN
remain to be explored. Most studies focus on feature fusion,
but it is critical to aggregate topological information across
views to obtain optimal consistent connectivity relationships,
especially for GCN-based models. In the future, we will devote
ourselves to further extending IMvGCN and investigating a
multi-view learning framework with learnable topology.
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