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Abstract

Graph convolutional network has been extensively employed in semi-supervised
classification tasks. Although some studies have attempted to leverage graph con-
volutional networks to explore multi-view data, they mostly consider the fusion
of feature and topology individually, leading to the underutilization of the consis-
tency and complementarity of multi-view data. In this paper, we propose an end-
to-end joint fusion framework that aims to simultaneously conduct a consistent
feature integration and an adaptive topology adjustment. Specifically, to capture
the feature consistency, we construct a deep matrix decomposition module, which
maps data from different views onto a feature space obtaining a consistent feature
representation. Moreover, we design a more flexible graph convolution that al-
lows to adaptively learn a more robust topology. A dynamic topology can greatly
reduce the influence of unreliable information, which acquires a more adaptive
representation. As a result, our method jointly designs an effective feature fusion
module and a topology adjustment module, and lets these two modules mutually
enhance each other. It takes full advantage of the consistency and complemen-
tarity to better capture the more intrinsic information. The experimental results
indicate that our method surpasses state-of-the-art semi-supervised classification
methods.
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1. Introduction

Recently, multi-view data has become an important data source in numerous
fields due to the rich information it provides. The data from various perspectives
not only complements the missing information of each other but also represents
the consistency property of one object. As the information captured in multi-view
data is more complete, multi-view learning has been widely applied to the fields
of clustering [1, 2, 3, 4], discriminant analysis [5, 6, 7] and computer vision [8, 9,
10, 11].

As multiple connective relations between entities can be described well by
graphs, multi-view data can be naturally represented as graph structures. By ab-
stracting different types of data into graph structures, graph learning makes it
possible to use the same machine learning framework to solve different types of
problems. Graph learning has achieved remarkable results in numerous domains
like node classification [12, 13, 14], graph clustering [15, 16, 17], link predic-
tion [18, 19, 20] and fashion recommendation [21, 22]. Graph Convolutional Net-
work (GCN), which has the ability to handle non-Euclidean data, is an effective
approach to graph learning [23]. Due to its efficient layer-wise propagation rule,
GCN can aggregate feature information from the topological structure.

There have been many attempts to utilize GCN for learning a consistent rep-
resentation from multi-view data. Some approaches [24, 25, 26] try to learn in-
dependently from multiple perspectives to obtain view-specific representations,
which inevitably carry redundant information. In other words, as the previously
mentioned methods focus on the explicit fusion of multi-view data, they assume
that each view carries equally important information, which does not consider the
consistency of multi-view data well enough.

Since multi-view data lacks a natural graph structure, most methods determine
the similarity of node geometric relations to construct a topology structure, which
is probably unreliable. The topology is constructed with fixed connective relations
built by each view data, and it is difficult to filter out the influence of unreliable
information [25, 27, 28]. Therefore, some research [29, 30, 31] pointed out that it
is necessary to further adjust the generated topology structure to obtain more com-
prehensive topological information. Regarding the differences among multi-view
data descriptions, this solution which considers only the nearest neighbor search,
is not comprehensive. It often happens in multi-view scenarios that two objects do
not belong to the same class, but they have relatively similar features in one view.
Filtering the undesirable connective relations provided by particular views can
improve the performance of classification tasks. Therefore, how to make the best
use of these connective relations is a point that the topology adjustment module



should be considered properly.

The methods mentioned above only focused on feature fusion and topology
adjustment separately and did not consider the joint learning of feature fusion
and topology adjustment, leading to inconsistent information that is transmitted.
To solve the problems mentioned above, we propose an end-to-end framework
named Joint Fusion Graph Convolutional Network (JFGCN). For feature fusion,
we design a deep neural network to approximate matrix decomposition and finally
gain a consistent feature representation. For topology adjustment, after analyzing
the graph Laplacian regularization, we put forward an adaptive convolution oper-
ation to flexibly generate a comprehensive topology by extracting the connective
relations from multiple views. Specifically, we construct an adaptive topological
structure on k-Nearest Neighbor (ENN) and k-Farthest Neighbor (kFN) to keep
similar nodes close and different nodes far away. JFEGCN exploits the supervi-
sory information between perspectives to dynamically generate a more accurate
feature representation and a more adaptive topology structure, fully capturing the
consistency and complementarity of multi-view data. The complete representa-
tions require a coordinated operation of feature fusion and topology adjustment.
Thus, JFGCN is designed as a joint framework for deeply extracting the consis-
tency and complementarity of multi-view data. Fig. 1 provides a description of
the proposed JFGCN. The major contributions of this paper are summarized as
listed below:

* Propose an end-to-end neural network for multi-view semi-supervised clas-
sification to jointly fuse feature information and adjust topology, allowing
them mutually reinforce each other.

* Design an implicit feature fusion to mine the underlying consistent informa-
tion and explore a more robust topology that adaptively fuses the adjacency
matrices generated by kNN and £FN.

* The proposed framework is applied to conduct multi-view semi-supervised
classification tasks, showcasing superior performance compared with other
state-of-the-art graph-based algorithms.

The following segments are arranged as below. In Section 2, we present a
brief overview of related work on graph convolutional networks and multi-view
learning. The presented method is described in detail in Section 3. In Section 4,
we evaluate the performance of the proposed method on six real-world datasets for
semi-supervised classification. Finally, Section 5 is the conclusion of this paper.
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Figure 1: An overview of the proposed framework JFGCN. We design a multi-
view autoencoder to approximate matrix decomposition, which integrates the con-
sistency of multi-view data. Simultaneously, the k-Nearest Neighbor (KNN) and
k-Farthest Neighbor (kFN) strategies are utilized to calculate a more accurate set
of topology matrices from two perspectives. Then JFGCN dynamically adjust it
by using a flexible graph convolution to learn a robust connective pattern.

2. Related Work

In this section, we review some previous efforts that are pertinent to our inves-
tigation, containing graph convolutional network and multi-view learning.

2.1. Graph Convolutional Network

Kipf et al. [23] first presented Graph Convolutional Network (GCN), which
could extract node features from non-Euclidean space and applied it to the task of
classifying nodes in a network. GCN originated from the spectral convolution on
the graph, which was performed by a signal x € R™ and the filter gy = diag(),
expressed as

goxx = UgyUz, (1)

where U is the eigenvector matrix of the normalized graph Laplacian L = Iy —
D 2AD 2 = UAU7, witha diagonal matrix constructed from its eigenvalues A
and U7z being the graph Fourier transform of z.

GCN performed a first-order approximation of the truncated Chebyshev poly-
nomial and designed a propagation rule which can be formulated as

HUY = (D 2AD :HOWH), )
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where H®) and H*+Y are the input and output of the [-th graph convolution layer.
Here, o(-) is an activation function, A = A + I is an adjacency matrix with
self-loop, and D is denoted as a degree matrix.

GCN has the ability to aggregate the neighbor features of nodes and learn node
representations by weighted aggregation. Thus it has a significant advantage that
encouraging performance can be obtained with a very small amount of labeled
data, which allows it to be used in a broad spectrum of research.

Pang et al. [32] adopted an adaptive quadratic frequency response function
and designed a new strategy to improve flexibility and interpretability through
theoretical analysis in a spatial domain. Wang et al. [24] introduced an adjustable
multi-channel graph convolutional network, extracting representations from node
features, topology and their combinations using an attention mechanism to ac-
quire the adaptive importance weights of the representation. Li et al. [25] pre-
sented an approach for the adaptive integration of multi-view feature information,
which employed GCN to generate representations for each view and finally ag-
gregated them. Feng et al. [33] designed a new graph convolution operator called
cross-feature graph convolution, which has a complexity that is linear to the fea-
ture dimension. Chen et al. [34] proposed a method name LGCN, which utilized
sparse autoencoders and fully connected networks to fuse features from different
views. It aims to study the unique underlying representations from all view fea-
tures, eventually fused them into one representation. Distinct from the aforemen-
tioned papers, we design a multi-view autoencoder to capture the consistency of
multi-view data simultaneously. In addition, instead of designing multiple GCNs
to learn multiple representations, and adaptively learning the weights of a single
topology, we explore one representation of the weights of different topologies in
the GCN.

In our explorations we have found that the majority of existing GCN-based
methods focus on single-view data in an attempt to better tune the effect of feature
learning. The remaining small number of approaches mostly focuses on explicit
feature fusion and do not take full advantage of the consistency and complemen-
tarity of multi-view data. There is still a long portion of GCN-based multi-view
learning that can be explored.

2.2. Multi-view Learning

Multi-view learning is trained in scenarios that are comprised of multiple
data sources, extracting consistent and complementary information from multi-
ple views while reducing the interference of redundant information. In practical
applications, one object can be described from different views, and these vari-
ous descriptions constitute multiple views of this object. Besides, different views
often contain view-specific information that can complement each other to ob-
tain a more complete description of the object. The intrinsic representation of
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multi-view data can be better learned through the deep mining of consistent and
complementary information.

Multi-view learning is desired to leverage data from different sources to im-
prove the holistic effect and eventually achieves knowledge transfer among dif-
ferent views. Nie et al. [34] proposed a brand new method by reconstructing the
standard spectral learning model, which was capable of adaptively learning the
weight of each view and exploring a matrix of tokens by aggregating the loss func-
tions of multiple views. Yang et al. [30] developed a topology fusion method that
aims to obtain a complete topology by fusing the similarity relations learned from
different views and designed a learnable weight parameter to aggregate the useful
topological information. Jia et al. [35] proposed a multi-view deep discriminative
representation learning method to reduce the redundancy of the learned represen-
tation by combining orthogonality and adversarial similarity constraints. Wu et
al. [36] suggested an end-to-end model, which constructed a flexible graph filter
and introduced orthogonal normalization to enhance the interpretability of neu-
ral networks. Yao et al. [37] posited a multi-view graph convolutional network
with an attentional mechanism, by combining the topology of multiple views and
an attention-based feature aggregation strategy. Methods on multi-view learning
attempt to explore the consistency and complementarity of multi-view data, cap-
turing a more comprehensive representation. The above methods attached more
importance to consistent information embodied in multi-view data by designing
various constraints to learn a representation. In contrast to the above mentioned
papers, our method captures the consistency of multi-view data by designing a
multi-view autoencoder, and exploits the complementarity of multi-view data by
adaptively learning the weights between multiple topologies via NN and £FN.

Existing GCN-based multi-view learning focuses on several modules such as
explicit representation fusion and topology adjustment. Most of the methods at-
tempt to mine the consistency information of multi-view data in various ways and
also achieve encouraging performance. However, these methods neglect the uti-
lization of supervised information between views. The proposed method attempts
to explore an implicit feature fusion and topological adjustment to fully exploit
the consistency and complementarity of multi-view data.

3. The Proposed Method

In this section, to jointly extract the feature and topology information from
multi-view data, we present the JEGCN model for exploring the underlying repre-
sentation. JEGCN consists of two main modules: A feature fusion network and an
adaptively regularized GCN. The feature fusion module is designed to integrate
features from multiple views into a consistent low-dimensional representation, so
as to deeply explore the shared information. For the adaptively regularized GCN



Table 1: The symbolic notations and their descriptions.

Notations ‘ ‘ Descriptions
X ¢ Rrxdv The v-th view feature matrix.
X(©) g R The v-th view reconstructed feature matrix.
ZUh) ¢ R7xe The latent consistent representation of the [-th layer.
H, e R™™ The feature representation matrix of the i-th layer.
AlY) € Rmn || The similarity matrix constructed from X by kNN.
ASQg € R™™ || The similarity matrix constructed from X by kFN.

module, we revisit GCN to explore more accurate topological relations among
views based on the graph Laplacian regularization. To be specific, we design a
GCN with an adaptive topology structure, which employs NN to learn the com-
mon features between similar nodes, and £FN to distinguish the difference among
nodes far from each other. By simultaneously training these two modules, we
take full advantage of the consistency and complementarity of multi-view data
and finally achieve promising results.

To better understand the mathematical notation usages which are primarily
used in this paper, we list the explanations of these notations in Table 1.

3.1. Multi-view Feature Fusion Network

Owing to the underutilization of consistency of multi-view data which results
in incomprehensive feature representation, the proposed JFGCN attempts to de-
sign a feature fusion method, which can acquire more comprehensive represen-
tations. We regard multi-view data as a set of feature data obtained by different
mappings of an essential feature representation, which contains the consistency
and complementarity of the data. Considering that the consistent information
among views needs to be emphasized, there is a strong desire to obtain high-
quality feature extraction by exploiting mutual supervision between views. The
deep matrix decomposition is presented with the goal of improving the feature
extraction capabilities, which distills more vital features. The feature extraction
operations approximate the decomposition of a matrix to the product of two matri-
ces with lower rank. When performing matrix decomposition on the view-specific
features, we can obtain filtered feature matrices, which express the information
more obviously.

However, using matrix decomposition for each view separately cannot ad-
equately utilize the strengths of the consistent information of multi-view data.



Thus, matrix decomposition of the multi-view feature matrix maps the samples
in the feature space of different views onto a shared space and extracts the most
important feature. For more flexible computation, we design a multi-view au-
toencoder network to approximate matrix decomposition, so that a unified shared
representation of all views can be derived to offer better access to the underly-
ing information. By implicitly fusing feature information, JFGCN filters some
unreliable data, obtaining a more intrinsic representation.

An autoencoder can be formulated as X = ¢ (f (X)), where f () is an en-
coder, and ¢ () is a decoder. We denote H and P as the weight matrices of the
encoder and decoder, which can be represented as X = XHPT. If the input is
replaced by an identity matrix, the expression can be written as X = IHPT =
HP7T, which can be considered as matrix decomposition. Furthermore, to solve
the matrix decomposition of multiple views, we use a shared encoder and V' de-
coders, where the output of the shared encoder is a consistent feature represen-
tation of the multi-view data, and the output of each decoder corresponds to a
reconstructed matrix X of the view data.

Specifically, the output of the ¢-th layer in the encoder is

H,;l =0 (HZPZT) y (3)

where o (-) is a specific activation function used to guarantee some constraint on
matrix decomposition. We denote the last layer of the encoder as H, which can
be regarded as the consolidated representation of all views. By using multiple
projection matrices, we map data from different original spaces onto a unified
representation matrix, which contains a view-shared representation. In a nutshell,
JFGCN acquires a low-dimensional shared representation H by an implicit ma-
trix multiplication operation to reduce the dimensionality in the decoder part, and
maps it onto the next layer in the encoder, until a new view-specific X(*) is ob-
tained, which can be expressed as

X" = o(o(HP;") - Py")P}”, )

where X is the output of the v-th decoder, denoted as the reconstructed data
matrix of the v-th view. H is the final output of the encoder. Eventually, the
loss is minimized to filter out the view-specific information to obtain a consistent
low-dimensional representation that incorporates multi-view consensus features.

Because the constructed low-dimensional representation H is expected to be
extracted as accurate features of each view as possible, we adopt a loss function
to evaluate the distance between original features and the reconstructed represen-
tations, 1.e.,

|4
1 )
- = () _ x ()2
Lre =3 §:1: X — X2, 5)
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3.2. Adaptively Regularized GCN

Graph regularization has been widely studied as a graph-based nonlinear di-
mensionality reduction method. We first introduce the multi-view graph regular-
ization problem

2
n

v
ngn Z a@AW (6)

Z; Z;
ij )
fn o —— (v) (v)
o=l L=/ D;; Dj; 2

where z; is the i-th row vector of the learned representation Z. Here, AZ(-;-’) is
the [i, j]-th element of the adjacency matrix A, and o(*) is the weight of A,
Problem (6) aims to generate a low-dimensional representation that preserves the
potential structure of the original data. To filter unnecessary connective relations,
we jointly consider two kinds of connective relations and design a new topol-
ogy structure, which applies k-Nearest Neighbor (KNN) and k-Farthest Neighbor
(KFN) simultaneously. kNN gathers the & neighbors closest to the sample, while
kFN collects the k& neighbors farthest from the sample.

If two samples x; and x; are connected, they should be close in the low-
dimensional space. We utilize kNN to design positive connective relations named
AI()?,L, as follows

AW —

POS

0, otherwise.

However, it is not perfectly reasonable as each edge in each view contributes
equally to the objective function in the multi-view case. For example, two sam-
ples that do not belong to the same class have similar features in a certain view,
and this misinformation may be exploited and propagated, which degrades the
performance of the classification task. This information is inevitably carried in
multi-view data, but the information carried by the nodes that are farther away at
this point is more credible. This type of connection may encode the dissimilar-
ity between samples, called negative edges, which means that the corresponding
samples are expected to be far away in the latent space.

Therefore, we apply KFN to construct adjacency matrices with negative edges
to widen the distance of dissimilar nodes and design negative connective relations
named Affe)g, as follows

w _ L x" € ENGG”) orx( € KEN(x["),
Ay = . A ®)
’ 0, otherwise.
Finally, we define an adaptive fusion rule of adjacency matrices as
AP = BAY) 1 BAL ©)
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where 3; + 5o = 1. ASZ)L is the positive connective relations that can narrow the
similar nodes, and ASZQg is the negative connective relations that are used to pull
away the different nodes. Please note that the final generated A" is designed to
be normalized. Therefore, D(*) is guaranteed to be positive.

For a brief formulation, we temporarily ignore the weighted sum, and only use
the view-specific form

2
Il’lln

4,1 -n
”1 \/ u \/ JJ

Equation (10) can be transformed into the following form

(10)

min Tr(Z'LWZ), (11)

where L®) = I — (]AD(“)’%A( (D®)~ i the Laplacmn matrix using the sym-
metric normalization with A®) = I+ A® and D™ is a degree matrix of v-th
view data.

To tackle the problem (11), we denote £ = Tr(ZTfJ(”)Z) and then calculate
its derivative w.r.t. Z, that is,

g; (I - (15<“>)—%A<“)(15<”>)—%) Z. (12)
Letting Equation (12) be equal to zero, it leads to
% — 0= 7" = (DW) AV D) 17, (13)

The above Equatlon (13) can be explained as a limit distribution where Zy;,, =
(D®)~2 A®)(D®))~2Z,,. Then we have the following iterative form to ap-
proximate the limit of Z:

1 AlY
2= 2 4y —— g (14)

D Z 7 /DYDY

which is the forward computation of the commonly used GCN. And we rewrite it
as the Equation (9),

ZHD = (DO 2(14+ AW D®) 22
= (DW) 21+ /AW + BAL )(DW)2Z0 (15)
= (D)2 [B I+ AL) + GBI+ AL (DW) 220,
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Thus, we define (I + Al(ff,)S) as the positive graph-regularized convolution, while
I+ ASQE,) is a negative graph-regularized convolution, which is an operation to
stress the self features and promotes the connected samples to be dissimilar. In a
weighted way, the two connective relations supervise each other to generate more
accurate topology information.

Utilizing this graph convolution to construct the network, we obtain the fol-
lowing propagation rule

14
7+ _ (Z a(v)A(v)Z(l)W(Hl)) , (16)
v=1

where A® = WAL, + B AL, and the initial input Z(© = H. With this
series of adaptive operations on edges, the relationship between pairs of nodes in
graph topological space is adaptively adjusted to efficiently extract more accurate
topological information. The loss of JFGCN is evaluated with the cross-entropy
error over all labeled samples, as follows

Lop = —Ziyij InZ, (17)

i€ j=1

where (2 refers to the set of labeled samples, ¢ is the amount of classes, and K is
the layer in JFGCN.

We aggregate the above loss functions to train the proposed method. The loss
function for the whole networks is shown below

L=Lcg+ \CRrE. (18)

JFGCN continuously trains the loss while approaching better feature represen-
tations and a more accurate topology structure. We conclude the training proce-
dure of the proposed method in Algorithm 1, and return the predictive representa-
tion.

4. Experiments

In this section, we performed the experimental settings, detailing the selected
data sets and comparison methods. All compared methods are tested on six main-
stream datasets to evaluate the evaluation metrics. In addition, experiments such
as ablation studies and parameter sensitivity analysis are performed to prove the
effectiveness and feasibility of JFGCN for semi-supervised node classification
tasks.

11



Algorithm 1 Joint Fusion Graph Convolutional Network (JFGCN)

Input: Multi-view data {X,}_,, label matrix Y € RI®/*¢, hyperparameter & in

kNN and kFN.
QOutput: Predictive labels.
Initialize weights and biases of autoencoders;
Calculate A, and A%, from X, for each view through kNN and kFN.
while not convergent do
fori=1—1do
Compute corresponding representation H; with Equation (3);
end for
Calculate A through A, and A%, by Equation (9);
Update Z with forward propagation with Equation (16);
Compute the loss £ by Equation (18);
Optimize the trainable parameters from network by backward propagation;
end while
Obtain the predictive output Z;
Generate labels based on the predictive output Z;
return Predictive labels.

4.1. Experimental Settings

In this subsection, the proposed method JFGCN is compared with eight meth-
ods on six benchmark datasets. We detail the sources of the six datasets and briefly
describe the parameters used for each compared method.

4.1.1. Datasets

Six commonly available multi-view datasets are used to evaluate the perfor-
mance, as listed below. Table 2 presents some details of these datasets, including
the number of samples, features, views, and data types.

Table 2: A brief description of the test multi-view datasets.

Datasets H # Samples ‘ # Views ‘ # Features ‘ # Classes ‘ # Data Types
100leaves 1,600 3 64/64/64 100 Object images
ALOI 1,079 4 64/64/77/13 10 Object images
Animals 10,158 2 4,096/4,096 50 Animal images
Caltech102 9,144 6 48/40/254/1,984/512/928 102 Object images
MNIST 10,000 3 30/9/9 10 Digit images
OutScene 2,688 4 512/432/256/45 8 Object images

12



100leaves' contains 16 different plant leaves, each with 100 samples. Three
view features are used, including shape description, edge and histogram features.

ALOP is a set containing a large number of images of objects that were taken
under different lighting illumination conditions and angles of rotation.

Animals® has the 30,475 animal photos organized into 50 categories. And two
categories of features from these images were analyzed and extracted.

Caltech102* comprises 9,144 images distributed over 102 classes. Six ex-
tracted features are used: Gabor features, wavelet moments features, Centrist fea-
tures, histogram of oriented gradients features, GIST features, and LBP features.

MNIST? is a handwritten digits dataset, which has three types features: pro-
jection, linear discriminant analysis and neighborhood preserving embedding.

OutScene® contains 2,688 images belonging to 8 groups. For each image, we
extract GIST features, color moment features, HOG features, and LBP features.

4.1.2. Compared Methods

To validate the proposed framework, we compare our method with several
classical and state-of-the-art algorithms in multi-view semi-supervised classifica-
tion tasks, including MVAR [38], WREG [39], HLR-M?VS [40], Co-GCN [25],
ERL-MVSC [41], DSRL [42], LGCN-FF [43] and GCN-Fusion [23]. The de-
scriptions of these methods and some detailed settings are provided below.

MVAR utilizes the [, ; norm to evaluate the regression loss values for each
individual view so that the weighted sum of all regression losses is used to con-
struct the objective. We adjust the weight of each view to A = 1,000, while the
re-assignment parameter -y is fixed to 2.

WREG presents a supervised multi-view graph learning framework to pro-
cess different perspectives with a uniform perceptual manner. Furthermore, it
merges multi-view data through mapping raw features onto a discriminative low-
dimensional subspace. With this strategy, both relevant and complementary infor-
mation can be retained, which further enhances the discriminative capability for
subspace classification.

HLR-M?VS generates a unified tensor space to jointly explore the relation-
ships of multiple views through local geometric structures, where a low-rank ten-
sor regularization is used to ensure that each view is consistently fused. In this
method, the weight factors are set to \; = 0.2 and Ay = 0.4.

Thttps://archive.ics.uci.edu/ml/datasets/One-hundred-+plant+species+leaves+data+set
Zhttps://elki-project.github.io/datasets/multi_view

3http://attributes.kyb.tuebingen. mpg.de/
“http://www.vision.caltech.edu/Image_Datasets/Caltech101/
Shttp://yann.lecun.com/exdb/mnist/
®https://github.com/YuhongChen2320/multi-view-data

13



Co-GCN introduces graph convolutional networks to multi-view learning and
adaptively exploits graph information in multiple views by combining Laplace
operators. A two-layer GCN is adopted and the learning rate is set to 0.001.

ERL-MVSC reformulates a linear regression model to generate view-specific
representational regularizers and automatically identifies their weights, exploiting
diversity, sparsity, and consensus information from multiple views.

DSRL proposes a deep sparse regularizer learning model that adaptively re-
covers a data-driven sparse regularizer. It constructs a neural network consisting
of various blocks, each of which is differentiable and reusable.

LGCN-FF consists of two stages, where the previous one designed to train an
underlying representation from heterogeneous views, and the latter one aims to
explore a more discriminative graph fusion through learnable weights and param-
eterized activation functions.

GCN-Fusion is derived from the transformation of GCN. GCN is skilled at
handling semi-supervised node classification tasks. Since the raw model cannot
handle multi-view data directly, we compute the average adjacency matrix during
the graph convolution, which is called GCN-Fusion. The learning rate is 0.01 and
the convolution layer is set to 2.

Furthermore, we also detail several experimental metrics used in our experi-
ments. The dimensionality of the potential representations of the graph autoen-
coder is set up as {2,048, 1,024}. The learning rate in the experiments is fixed as
0.001 and the weight decay rate is matched to 0.0005. All experiments are per-
formed 5 times and we keep the mean and standard deviation as the final results.
Eventually, two classification evaluation metrics, accuracy (ACC) and F1-score,
are applied to the experiments.

4.2. Experimental Results

In this subsection, we perform semi-supervised classification experiments, pa-
rameter sensitivity analysis, and ablation study.

4.2.1. Semi-supervised Classification Performance

We conduct extensive experiments in multi-view semi-supervised classifica-
tion tasks. The performance of all compared methods with 10% randomly labeled
data is shown in Table 3. From the experimental results, the classification per-
formance obtained from JFGCN is superior on the six datasets. Compared to the
GCN-based method, the method showed more significant performance improve-
ments on the 100leaves and OutScene datasets. This result shows that JFGCN
has more powerful feature extraction and topology adjustment capabilities on the
tested datasets.

Besides, we verify the effectiveness of our topology adjustment module. We
plot the weight learning of A,,., and A,,,; named 3; and 3,. The weights of two
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Table 3: 10% labeled samples are used to compare the classification accuracy
(mean % and standard deviation %) of all methods, where the best performance is
highlighted in bold and the second-best results are underlined.

Datasets\Methods MVAR  WREG HLR-M?VS Co-GCN ERL-MVSC DSRL LGCN-FF GCN-Fusion JFGCN
ACC | 39.1(24) 627(59) 544(22) 303(50) 581(0.1) 67.9(1.6) 62.1(0.6) 763(20) 92.1(0.4)
L0leaves | PTECISION | 3BI@D) S83(7.0)  493(23) 348@4)  S63(03) BIGH 647(16) T3IGE6 92903
Recall | 424(23) 64.7(54) 569(2.1) 303(50) 642(20) 681(24) 622(0.7) 77.2(1.8)  92.1(0.4)
Fl-score | 40.1 3.1) 613(63) 528(2.1) 29.1(49) 57.7(0.1) 64.4(1.8) 61.7(05) 735(2.6) 91.9(0.4)
ACC | 559(0.7) 90.2(1.3) 89.7(0.8) 859(52) 87.9(1.3) 90.9(09) 95.6(03) 91.9(09) 97.2(L7)
ALol | Precision | 200(11.0) 912(LD)  905(0.8) 862(7.) 880(12) 92105 95903 92606 9403
Recall | 31.0(9.0) 90.3(1.4) 89.8(0.8) 86.1(50) 88.8(09) 91.0(0.8) 956(0.3) 92.0(0.9) 97.2(0.3)
Fl-score | 49.7(0.7) 90.7(12) 90.1(0.8) 85.1(63) 884(L.1) 91.1(0.8) 956(03) 92.1(0.9) 97.2(L7)
ACC | 81.5(0.5 83.5(0.3) 727(0.5 802(12) 70.1(0.1) 78.7(05) 739(03) 648(03) 84.8(0.1)
Animals | PTECISION | 791(L8) 805 Q7 702009) 7717 66001  753(L5) S85O.H  631(10) 8602
Recall | 745(0.6) 769(0.8) 66.0(1.0) 732(15) 648(0.1) 71.7(10) 656(0.5 60.6(0.7) 79.6(0.1)
Fl-score | 76.7(1.0) 78.7(05) 68.1(0.9) 73.7(1.6) 654(0.1) 71.9(I.1) 66.1(0.5) 609 (0.8) 80.1(0.1)
ACC | 46.1(1.0) 469(0.5 48.1(04) 38.0(87) 463(0.1) 520(04) 369(0.6) 40.8(04) 53.7(0.6)
Callech10z | Frecision | 404(19) 3482.6) 35907 22365 267(12) 358(12) 145171 26204 39606
Recall | 22.7(0.9) 242(0.6) 27.6(1.1) 21.2(63) 493(19) 33.6(0.6) 132(1.7) 249(04) 33.8(0.9)
Fl-score | 29.0(1.0) 28.6(0.8) 312(0.7) 21.0(64) 27.6(12) 329(0.7) 125(1.2) 245(04) 34.6(0.9)
ACC | 849(0.1) 79.1(0.5 80.5(0.1) 78.1(40) 917(0.1) 89.1(05) 88.8(0.1) 90.4(09) 93.8(0.1)
Mgt | Precision | 81300 7740 8580 766(33) 91601  942(02) 87201 89412 98O
Recall | 82.1(0.1) 728(0.1) 755(0.1) 787(3.1) 917(0.1) 941(0.2) 86.0(0.1) 89.0(0.9  93.6(0.1)
Fl-score | 81.7(0.1) 75.0(0.1) 803 (0.1) 782(21) 91.6(0.1) 87.1(0.8) 864 (0.1) 889(1.0) 93.6(0.1)
ACC |46.1(113) 57.6(1.8) 73.3(17) 70.1(2.1) 708(0.1) 71.0(20) 672(02) 765(1.0) 814(0.6)
OutSeene | PHECISON | S95(89) 592(16)  768(05) 72020 TIAOD  T5404 900D  T8IAY) 8170
Recall |450(11.6) 580(1.7) 738(1.8) 713(1.9) 71.1(0.1) 71125 673(0.2) 768(1.0) 811(0.6)
Fl-score | 50.1 (11.1) 58.6(1.6) 752(12) 713(20) 713(0.1) 71.023) 675(03) 74.1(1.3) 77.0(L0)

adjacency matrices at loss convergence are depicted in Table 4. The results show
that different datasets often have different weight distributions. As we can see that
datasets with a small number of categories generally prefer to use more positive
connective relations, while datasets with a large number of classes favor reverse
connectivity information. This may be attributed to the difficulty of capturing
positive connective relations in situations when the number of categories is a bit
too much. Positive relations are more prone to errors than negative relations.

Furthermore, we test the accuracy of all compared algorithms at different ra-
tios on all six datasets. Figs. 3 and 4 demonstrate the performance of the proposed
JFGCN with ratios ranging from 5% to 50%. JEGCN acquires promising perfor-
mance at small ratios, while other comparison algorithms require higher ratios to
reach comparable accuracy. Overall, JEFGCN is more consistent with the intent of
the semi-supervised node classification.

For a more visual demonstration, the t-SNE visualization of node representa-
tions derived for MNIST is shown in Fig. 2. We first concatenate feature vectors
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Table 4: The presentation of the weight parameters 3; and (3, after training.

Datasets Weight parameter ACC Fl-score
B \ B

100leaves 0.21 (0.01) 0.79 (0.01) 92.1(0.4) 91.9 (0.4)
ALOI 0.94 (0.05) 0.06 (0.05) 97.2 (1.7) 97.2(1.7)
Animals 0.08 (0.03) 0.92 (0.03) 84.8 (0.1) 80.1 (0.1)
Caltech102 0.05 (0.01) 0.95 (0.01) 53.7 (0.6) 34.6 (0.9)
MNIST 0.77 (0.04) 0.23 (0.04) 93.8 (0.1) 93.6 (0.1)
OutScene 0.99 (0.01) 0.01 (0.01) 81.4 (0.6) 81.2 (0.6)

Table 5: Ablation study of the proposed JFGCN on all test datasets.

JEGCN wio A%, JFGCN wlo A, JFGCN
ACC Fl ACC FlI ACC Fl
100leaves | 90.44 (0.3) | 90.21 (0.3) | 83.07(1.3) | 82.61 (1.4) | 90.80(0.4) | 90.68 (0.4)
ALOL | 93.73(0.6) | 9376 (0.6) | 86.11 (1.4) | 86.74 (1.4) | 97.21 (0.1) | 97.22(0.1)
Animals | 8449 (0.1) | 77.53 (0.1) | 72.54 (0.1) | 65.53(0.1) | 84.86(0.1) | 80.07 (0.1)
Caltech102 | 4675 (03) | 22.41(0.5) | 3420 (0.6) | 930(0.6) | 51.40(0.6) | 30.76 (0.9)
MNIST | 93.41(0.1) | 93.33(0.1) | 86.95(0.6) | 86.75 (0.6) | 93.75 (0.1) | 93.66 (0.1)
OutScene | 78.36 (0.4) | 78.61 (0.4) | 7090 (1.0) | 71.00 (1.0) | 81.04(0.5) | 81.18 (0.5)

Datasets

of 3 views, and project the original high-dimensional data onto a 2D space by
using t-SNE. Then, the projected 2D data are colored with the class labels. It is
shown that the proposed method learns visual representation with large inter-class
distances and small intra-class distances.

4.2.2. Ablation Study

In order to verify the effectiveness of each model component, we perform an
ablation study as shown in Table 5. JFGCN achieves leading performance on
each of these datasets, especially the Caltech102 dataset. The performance of
A, alone is a bit better than A,,.,, but adaptive weight learning for both A,
and A,,., can better improve the performance. This demonstrated the feasibility of
adaptively regularized GCN modules, which also verifies the validity of both A,
and A,,;. Eventually, JFGCN designed a unified framework for two connective
relations to learn better representation.

4.3. Parameter Sensitivity

In this subsection, the parameter sensitivity of the proposed networks is an-
alyzed to check the validity. We perform a sensitivity analysis on parameter k,
which denotes the number of neighbors chosen by kNN. Fig. 5 shows the sensi-
tivity w.r.t parameter & on tested datasets. We find that almost all the best perfor-
mance happens at £ = 10. Except for 100leaves and Caltech102, the optimal %
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Figure 2: Visualization for multi-view semi-supervised classification on MNIST.

values differ slightly for different datasets. We can observe that & has little impact
on the performance of these datasets, which demonstrates that JFGCN can acquire
relatively accurate connective relations even when £ is small. For 100leaves and
Caltech102, the fluctuation of performance may be due to a large number of cat-
egories. When a large k is selected, the adjacency matrix generated for kNN will
be dense, resulting in indistinguishable representations.

4.4. Convergence Analyses

In this subsection, the convergence of the algorithm is analyzed in Fig. 6. The
figures demonstrate that the loss curve of the proposed method initially decreases
rapidly before reaching a plateau across these datasets as the training progresses.
Specifically, for a fixed number of epochs, the loss declines steeply at the begin-
ning while the performance improves significantly. After a sufficient number of
epochs, the loss and accuracy attain stable values with minor fluctuations. With
the exception of the ALOI and Caltech102 datasets, the loss functions on the re-
maining datasets converge after around 200 rounds of training, demonstrating that
the model’s loss functions converge effectively and facilitate the network’s effi-
cient learning.
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5. Conclusion

In this paper, we proposed an end-to-end neural network framework named
JFGCN which attempted to accurately utilize the consistency and complemen-
tarity of multi-view data. JFGCN aimed to simultaneously implement feature
fusion and topology adjustment, making these two modules supervise each other.
The proposed JFGCN implicitly learned a consistent low-dimensional representa-
tion by using a multi-view autoencoder to approximate the matrix decomposition,
which incorporated consistent information across multiple views. In addition, in
order to inject a more robust representation of connective relations, JFGCN em-
ployed a filtering mechanism to adaptively adjust topological information. The
experimental results further validated the superiority of the proposed framework
for multi-view semi-supervised classification tasks.

There are still some potential research directions to be further explored. In
most practical applications, most multi-view data is not available in natural topol-
ogy and most topology structure is built by kNN algorithms, which inevitably
leads to the aggregation of undesired connected relations. In future work, we will
devote to explore how to further mitigate the propagation of errors in unnecessar-
ily connected relations.
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