
Beyond Graph Convolutional Network: An Interpretable Regularizer-Centered
Optimization Framework

Shiping Wang1,2, Zhihao Wu1,2, Yuhong Chen1,2, Yong Chen3*

1College of Computer and Data Science, Fuzhou University, China
2Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University, China

3School of Computer Science, Beijing University of Posts and Telecommunications, China
shipingwangphd@163.com, zhihaowu1999@gmail.com, yhchen2320@163.com, alphawolf.chen@gmail.com.

Abstract

Graph convolutional networks (GCNs) have been attracting
widespread attentions due to their encouraging performance
and powerful generalizations. However, few work provide a
general view to interpret various GCNs and guide GCNs’ de-
signs. In this paper, by revisiting the original GCN, we in-
duce an interpretable regularizer-centerd optimization frame-
work, in which by building appropriate regularizers we can
interpret most GCNs, such as APPNP, JKNet, DAGNN, and
GNN-LF/HF. Further, under the proposed framework, we de-
vise a dual-regularizer graph convolutional network (dubbed
tsGCN1) to capture topological and semantic structures from
graph data. Since the derived learning rule for tsGCN con-
tains an inverse of a large matrix and thus is time-consuming,
we leverage the Woodbury matrix identity and low-rank ap-
proximation tricks to successfully decrease the high computa-
tional complexity of computing infinite-order graph convolu-
tions. Extensive experiments on eight public datasets demon-
strate that tsGCN achieves superior performance against quite
a few state-of-the-art competitors w.r.t. classification tasks.

Introduction
Owing to the powerful ability to aggregate neighborhood in-
formation, Graph Convolutional Network (GCN) has been
successfully applied to diverse domains, such as computer
vision (Chen et al. 2019; Nie et al. 2020; Wang et al. 2022),
recommender systems (Xu et al. 2019; Chen et al. 2022), pri-
vacy preserving (Hu et al. 2022), and traffic forecasting (Yu,
Yin, and Zhu 2018; Chen et al. 2020b). Rooted in a series
of theoretical foundations, GCN extends convolution opera-
tions to the non-Euclidean spaces and effectively propagates
label signals, and therefore its variants have been extensively
employed for a variety of graph-related tasks, including clas-
sification (Zhang et al. 2019; Yang et al. 2022; Chen et al.
2023; Wu et al. 2022), clustering (Fan et al. 2020; Zhu and
Koniusz 2021) and link prediction (Chen et al. 2020a; Hal-
liwell 2022). In a nutshell, GCN generates embeddings with
the well-established graph convolutional layers gathering se-

*Corresponding author
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Its code is available at https://github.com/ZhihaoWu99/tsGCN
and the supplementary material is uploaded to https://arxiv.org/abs/
2301.04318.

mantics from neighbors according to the network topology,
which are revealed to be the most critical component.

Although GCN has behaved well in many machine learn-
ing tasks, lots of studies have pointed out its certain draw-
backs and made efforts for further improvements. Bo et al.
(Bo et al. 2021) indicated that the propagation mechanism
could be considered as a special form of low-pass filter, and
presented a GCN with an adaptive frequency. Zhang et al.
(Zhang et al. 2021) argued that most GCN-based methods
ignored the global information and proposed SHNE, which
leveraged the structure and feature similarity to capture la-
tent semantics. Wang et al. (Wang et al. 2020) revealed that
the original GCN aggregated information from node neigh-
bors inadequately, and then developed a multi-channel GCN
by utilizing feature-based semantic graph. In spite of the per-
formance boosts of these GCN variants, they didn’t establish
a generalized framework, i.e., these approaches understood
and enhanced GCN from certain and non-generalizable per-
spectives, thereby they are exceedingly difficult to be further
developed, and with limited interpretability.

Consequently, it is expected to construct a unified frame-
work for various GCNs with better interpretability; however,
it is a pity that this kind of work is still in shortage. Zhao and
Akoglu (Zhao and Akoglu 2020) linked GCN and Graph-
regularized PCA (GPCA), and then proposed a multi-layer
network by stacking the GPCA layers. Zhu et al. (Zhu et al.
2021) attempted to interpret existing GCN-based methods
with a unified optimization framework, under which they de-
vised an adjustable graph filter for a new GCN variant. Yang
et al. (Yang et al. 2021) designed a family of graph convo-
lutional layers inspired by the updating rules of two typical
iterative algorithms. Although these efforts have contributed
to better understanding of GCNs, they only explained GCNs
in partial aspects, promoting the expectation of a more com-
prehensive analysis of GCNs.

To tackle the aforementioned issues, this paper induces an
interpretable regularizer-centered optimization framework,
which provides a novel perspective to digest various GCNs,
i.e., this framework captures the common essential proper-
ties of existing state-of-the-art GCN variants and could de-
fines them just by devising different regularizers. Moreover,
in light of the analyses on current representative GCNs, we
find that most of the existing approaches only consider cap-
turing the topological regularization, while the feature-based

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

4693

semantic structure is underutilized, and hence this motivates
us to design a dual-regularizer graph convolutional network
(called tsGCN) within the regularizer-centered optimization
framework for the fullest explorations of both structures and
semantics from graph data. Due to the high computational
complexity of infinite-order graph convolutions, the unified
framework provides a straightforward way employing trun-
cated polynomials to approximate the graph Laplacian, simi-
lar to the truncated Chebyshev polynomials by vanilla GCN,
restricting the message passing of a single graph convolution
to the first-order neighborhood. And we also design an effi-
cient way to perform the infinite-order graph convolution.

The main contributions of this paper can be summarized
as the following three aspects:
• Propose a regularizer-centered constrained optimization

framework, which interprets various existing GCNs with
specific regularizers.

• Establish a new dual-regularizer graph convolutional net-
work (tsGCN), which exploits topological and semantic
structures of the given data; and develop an efficient algo-
rithm to reduce the computational complexity of solving
infinite-order graph convolutions.

• Conduct a series of experiments to show that tsGCN per-
forms much better than many SOTA GCNs, and also con-
sumes much less time than the newly GNN-HF/LF.

Related Work
Graph Convolutional Networks
The original GCN was first introduced by Kipf and Welling
(Kipf and Welling 2017), who generalized the convolution
operations from the Euclidean domain to the non-Euclidean
domain. SGC (Wu et al. 2019) assumed that the nonlinear
transform of GCN was not that significant, and then devised
a simplified GCN by removing the nonlinear activation func-
tions and collapsing the weight matrices. PPNP (Klicpera,
Bojchevski, and Günnemann 2019) employed the relation-
ship between PageRank and GCN for the improvement on
the propagation mechanism of GCN, and an iterative version
called APPNP was further proposed to reduce the high com-
putational complexity. Attempting to adaptively learn the in-
fluence radii for each node and task, JKNet (Xu et al. 2018)
combined various aggregations at the last layer and was able
to learn representations of different orders for graph sub-
structures. GNN-LF and GNN-HF (Zhu et al. 2021) con-
sidered the low-pass and the high-pass filter as the convo-
lution kernels to improve GCN’s expressive power, respec-
tively. AdaGCN (Sun, Zhu, and Lin 2021) leveraged Ad-
aboost strategy for the enhancement of GCN, allowing in-
formation to be shared between layers. To sum up, a main
characteristic of these methods is exploring GCN from the
perspectives of redesigning information aggregation strate-
gies or modifying graph convolutions, and few work try to
construct a unified framework to interpret various GCNs and
reveal the underlying common principles.

Further Insights on GCNs
Quite a few studies have been devoted to explore the mech-
anisms of GCN for deeper insights. Li, Han, and Wu (Li,

Han, and Wu 2018) indicated that the convolutional oper-
ation of GCN was a special form of Laplacian smoothing,
attributed to which GCN suffered from the so-called over-
smoothing problem. Specifically, the performance of GCN
will decrease as the number of layers increases, which has
been validated by many other studies. However, Liu, Gao,
and Ji (Liu, Gao, and Ji 2020) held a different opinion that
the entanglement of two steps in GCN damaged the perfor-
mance of the deep GCN, where the two steps were explained
as propagation and transformation. Based on this view, they
decoupled the two operations and further presented a deeper
GCN. Zhu et al. (Zhu et al. 2021) also decomposed the con-
volution operation of GCN into two separate stages, called
aggregation and transformation, and focused on the aggrega-
tion process, formulating an optimization objective to inter-
pret it. Yang et al. (Yang et al. 2019) explored network topol-
ogy refinement, leveraging a topology optimization process
for the explanation. Oono and Suzuki (Oono and Suzuki
2020) analyzed the forward propagation of GCN and inter-
preted it with a specific dynamical system, linking GCN to
the underlying topological structures. Overall, these studies
have contributed to the interpretability of GCNs, and also
let researchers better understand GCNs. In this paper, we
build a unified optimization framework from a novel view
of graph regularizers to interpret and understand GCNs.

Mathematical Notations
For the convenience of formal descriptions, derivations, and
analyses, necessary notations are narrated as below. A graph
is denoted as G = (V , E ,A), where V marks the vertex set
with |V| = N (N is the total number of nodes in graph G),
E marks the edge set, and A = [Aij]N×N marks an affinity
matrix of which Aij measures the similarity between the i-
th and the j-th node. In addition, D = [Dij]N×N represents
the degree matrix of G with Dii =

∑N
j=1 Aij , and then the

normalized symmetrical graph Laplacian of G is computed
as L̃ = I− Ã with Ã = D− 1

2AD− 1
2 .

Revisiting Graph Convolutional Network
For a graph G = (V , E ,A), the SVD of its graph Lapla-
cian is L = UΛU⊤, where U ∈ RN×N is comprised of
orthonormal eigenvectors and Λ = diag(λ1, · · · , λN) is a
diagonal matrix with λi denoting the i-th eigenvalue and
λi ≥ λj (i = 1, · · · , N). Essentially, this decomposition
induces a Fourier transform on the graph domain, where
eigenvectors correspond to Fourier components and eigen-
values represent frequencies of the graph. For an input sig-
nal x ∈ RN defined on the graph G, the corresponding graph
Fourier transform of x is x̂ = U⊤x, and its inverse trans-
form is derived as x = Ux̂. Consequently, the graph convo-
lution between the signal x and the filter g ∈ RN is

g ∗ x = U(ĝ ⊙ x̂) = U((U⊤g)⊙ (U⊤x)), (1)
where⊙ is the Hadamard product between two vectors. Par-
ticularly, denoting gΘ = diag(Θ) := U⊤g parameterized
by Θ ∈ RN , the graph convolution between x and g can be
rewritten as

g ∗ x = U(ĝ ⊙ x̂) = UgΘU⊤x, (2)

4694

Methods Propagation Rules Regularizer L(H(l);G) Projective Set
GCN H(l) = σ

(
ÂH(l−1)Θ(l)

)
Tr

(
H(l)⊤L̃H(l)

) {
S(l) = S+, l ∈ [L−1],
S(L) = Ssimplex

SGC H(l) = σ
(
ÂH(l−1)Θ(l)

)
Tr

(
H(l)⊤L̃H(l)

) {
S(l) = S, l ∈ [L−1],
S(L) = Ssimplex

APPNP H(l) = σ
(
(1− α)ÂH(l−1) + αH(0)

)
Tr

(
1

1−αH
(l)⊤Â−1(H(l) − 2αH(0))

) {
S(l) = S, l ∈ [L−1],
S(L) = Ssimplex

JKNet H(l) = σ
(∑K

k=1 αkÂ
kH(l−1)Θ(l)

)
Tr

(
H(l)⊤Â−1(I+ βL̃)H(l)

) {
S(l) = S, l ∈ [L−1],
S(L) = Ssimplex

DAGNN H(l) = σ
(∑K

k=0 αkÂ
kH(0)

)
Tr

(
H(l)⊤(I+ βL̃)H(l)

) {
S(l) = S, l ∈ [L−1],
S(L) = Ssimplex

GNN-HF H(l) = σ
(
(I+ αL̂)−1(I+ βL̂)H(l−1)Θ(l)

)
Tr

(
H(l)⊤(I+ βL̂)−1(I+ αL̂)H(l)

) {
S(l) = S+, l ∈ [L−1],
S(L) = Ssimplex.

GNN-LF H(l) =
σ
(
(I+ αÂ)−1(I+ βÂ)H(l−1)Θ(l)

)
Tr

(
H(l)⊤(I+ βÂ)−1(I+ αÂ)H(l)

) {
S(l) = S+, l ∈ [L−1],
S(L) = Ssimplex

tsGCN H(l) = σ
(
(I+ αL̃G + βL̃X)−1H(l−1)Θ(l)

)
Tr

(
H(l)⊤(I+ αL̃G + βL̃X)H(l)

) {
S(l) = S+, l ∈ [L−1],
S(L) = Ssimplex

Table 1: Different regularizers can derive different GCN variants under the regularizer-centered optimization framework.

where Θ is regarded as the filter coefficients to be optimized.
Especially, Θ is assumed to be the polynomials of the spec-
trums of the graph Laplacian (Hammond, Vandergheynst,
and Gribonval 2011), i.e.,

Θ = Θ(Λ) =

K∑
i=1

ΘiΛ
i, (3)

where K is the order of Chebyshev polynomials. By fixing
K = 2, the graph convolutional network (GCN) (Kipf and
Welling 2017) takes an effective form

g ∗ x = θ(I+ L)x, (4)

where Θ = [θ] is a parameter to be optimized. When ex-
tending single channel signal x and filter θ to multi-channel
H(l) ∈ RN×dl and Θ(l) ∈ Rdl×fl , the GCN is converted to

H(l) = σ(ÂH(l−1)Θ(l)), (5)

where Â is a normalized version of I + Ã, σ(·) is an acti-
vation function, and H(l) ∈ RN×dl is the output of the l-th
layer with H(0) = X being the input feature matrix.

An Interpretable Regularizer-centered
Optimization Framework for GCNs

Given the input H(l−1) of the (l)-th layer, GCN can compute
the output H(l) by minimizing

L = −Tr(H(l)⊤H(l−1)Θ(l)) +
1

2
Tr(H(l)⊤L̃H(l)) (6)

s.t. H(l) ≥ 0,

where 1
2Tr(H(l)⊤L̃H(l)) = 1

4

∑N
j=1

∑N
i=1 Aij ||

h
(l)
i√
Dii
−

h
(l)
j√
Djj

||22 with H(l) = [h
(l)
1 ; · · · ;h(l)

N]; it is a normalized reg-

ularizer to preserve the pairwise similarity of any two nodes
in the given graph. Besides, the −Tr(H(l)⊤H(l−1)Θ(l)) is

actually a fitting loss term bewteen H(l) and H(l−1)Θ(l),
i.e., ||H(l)−H(l−1)Θ(l)||2F with H(l−1) and Θ(l) fixed when
optimizing H(l). Note that the square term ||H(l)||2F is a L2-
regularized smoother, which can be ignored or absorbed in
the second graph regularizer Tr(H(l)⊤L̃H(l)).

Taking derivative of L with respect to H(l) and setting it
to zero, we obtain H(l+) as

H(l+) = (I− Ã)−1H(l−1)Θ(l); (7)

and then there yields

H(l) = σ
(
H(l+)

)
, (8)

when the nonnegative constratints H(l) ≥ 0 are further con-
sidered. Notice that σ(·) is the ReLU(·) activation function.
Here, if the matix inverse (I−Ã)−1 =

∑∞
i=0 Ã

i is approxi-
mated by the first-order expansion, i.e., (I− Ã)−1 ≈ I+ Ã,
then Eq. (8) will lead to the updating rule (5) of GCN.

Usually, the activation functions in GCN are ReLU(·) and
Softmax(·), which could be converted to different projection
optimizations. Concretely, the ReLU(·) activation function
is equivalent to project a point x onto the non-negative plane
S+ = {s ∈ Rd|s ≥ 0}, i.e.,

ReLU(x) = arg min
y∈S+

−x⊤y +
1

2
||y||22. (9)

By the way, we denote S = {s ∈ Rd}, which corresponds
to an identity activation function. In terms of the Softmax(·)
activation function, it can be regarded as projecting x onto
the set Ssimplex = {s ∈ Rd|1⊤s = 1, s ≥ 0}, i.e.,

Softmax(x) = arg min
y∈Ssimplex

−x⊤y + y⊤ log(y), (10)

where y⊤ log(y) =
∑d

i=1 yi log(yi) is the negative entropy
of y (Amos 2019). In fact, with respect to other activation
functions, they can also be equivalent to project a point onto
some feasible set with some metric.

4695

Datasets #Node #Edge #Class #Feature

Cora 2,708 5,429 7 1,433
Citeseer 3,327 4,732 6 3,703
Pubmed 19,717 44,338 3 500
ACM 3,025 13,128 3 1,870
BlogCatalog 5,196 171,743 6 8,189
CoraFull 19,793 65,311 70 8,710
Flickr 7,575 239,738 9 12,047
UAI 3,067 28,311 19 4,973

Table 2: Dataset statistics.

Up to present, we have actually utilized a constrained op-
timization problem to interpret GCN, including information
propagations (i.e., Eq. (7)) and the nonlinear activation func-
tions (i.e., ReLU(·) and Softmax(·)).

The above analyses can not only explain the vanilla GCN,
but also stimulate a regularizer-centered optimization frame-
work that can further unify various GCNs. By extending the
optimization (6), a more general framework is written as

L = −Tr(H(l)⊤H(l−1)Θ(l)) +
1

2
L(H(l);G) (11)

s.t. H(l) ∈ {S+ or S}, l ∈ [L− 1],H(L) ∈ Ssimplex.

Under this framework, different regularizers could derive
different GCNs, for example,

• If L(H(l);G) = Tr
(
H(l)⊤(I+ µL̂)−1(I+ λL̂)H(l)

)
with λ = β + 1

α − 1, µ = β, and L̂ = I − Â,
then it induces the updating rule H(l) =

σ
(
(I+ αÂ)−1(I+ βÂ)H(l−1)Θ(l)

)
, which cor-

responds to GNN-HF (Zhu et al. 2021).

• If L(H(l);G) = Tr
(
H(l)⊤(I+ µÂ)−1(I+ λÂ)H(l)

)
with λ = −αβ+2α−1

αβ−α+1 and µ = 1
β − 1, then

it gives rise to the updating rule H(l) =

σ
(
(I+ αÂ)−1(I+ βÂ)H(l−1)Θ(l)

)
, which cor-

responds to GNN-LF (Zhu et al. 2021).

For more cases, their results are summarized in Table 1, and
the derivation details can refer to those of the original GCN
(from Eq. (7) to Eq. (10)) and the supplementary.

Remarks. The work (Zhu et al. 2021) is most similar to
our work with the same research idea: they both want to pro-
pose a unified framework to interpret the current GCNs and
guide the design of new GCN variants; however, they are re-
alized in different ways. To be specific, (1) Zhu et al. (Zhu
et al. 2021) develop an optimization framework to explain
different GCNs’ propagation processes; whereas we propose
a constrained optimization framework not only to interpret
various GCNs’ propagation processes, but also explain the
nonlinear activation layers; (2) (Zhu et al. 2021) unifies var-
ious GCNs via devising various fitting items; while our work
derives different GCNs through designing different regular-
izers. To sum up, our work interprets the whole (not partial)
GCNs with regularizer-centered constrained optimizations.

Algorithm 1: Topological and Semantic Regularized GCN

Require: Graph data G = (V , E ,A), labels y, number of
layers L, and hyperparameters {α, β, r}.

Ensure: Predicted label set {y∗i }Ni=n+1.
1: Initialize model parameters {H(l),Θ(l)}Ll=1;
2: Compute the joint graph Laplacian αL̃G + βL̃X and its

low-rank factorization WV⊤;
3: Substitute the matrix inverse (I+ αL̃G + βL̃X)−1 with

I−W(I+V⊤W)−1V⊤;
4: while not convergent do
5: Calculate hidden layers {H(l)}Ll=1 by Eq. (14);
6: Update weights: Θ(l+1) ← Θ(l) − η ∂L

∂Θ(l) ;
7: end while
8: return The predicted labels: y∗i = argmaxj H

(L)
ij .

tsGCN: Topological and Semantic Regularized
Graph Convolutional Network

One finding from most existing GCNs is that they often ig-
nored feature-based semantic structures, which can weaken
the representation learning abilities of graph networks, then
we focus on two regularizers, i.e.,

L1(H
(l);G) = 1

2
Tr

(
{H(l)}⊤(1

2
I+ αL̃G)H

(l)

)
, (12)

L2(H
(l);X) = 1

2
Tr

(
{H(l)}⊤(1

2
I+ βL̃X)H(l)

)
, (13)

where L̃G is a graph Laplacian from the given adjacency ma-
trix (e.g., L̃G = L̃), and L̃X is a graph Laplacian calculated
from the pairwise similarity of any two graph nodes. Hence,
we devise a dual-regularizer, i.e., L(H(l)) = L1(H

(l);G) +
L2(H

(l);X), and if it is under the optimization framework
(11), then there yields the following updating rule

H(l) = σ
(
(I+ αL̃G + βL̃X)−1H(l−1)Θ(l)

)
. (14)

Since this method seeks to preserve both the topological and
semantic structures for more accurate presentations, we call
it tsGCN (i.e., Topological and Semantic regularized GCN).

Notably, the computational complexity of (I + αL̃G +

βL̃X)−1 is O(N3), which tends to be unaffordable in prac-
tical applications. To this end, a low-rank approximation is
operated, i.e., αL̃G+βL̃X ≈WV⊤, where W,V ∈ RN×r

with r ≪ N . This leads to the Woodbury matrix identity:

(I+WV⊤)−1 = I−W(I+V⊤W)−1V⊤, (15)

of which the computational complexity costs O(N2).
Given that the optimal M∗ of the following problem

min
M∈RN×N : rank(M)=r

||M− (αL̃G + βL̃X)||2F (16)

is attained at the r-truncated singular value decomposition
of αL̃G + βL̃X , i.e., M∗ = UΣU⊤, where Σ ∈ Rr×r is a
diagonal matrix containing the r largest singular values. An

4696

Metrics Methods / Datasets Cora Citeseer Pubmed ACM BlogCatalog CoraFull Flickr UAI

Chebyshev 76.2 (0.7) 69.3 (0.4) 74.0 (0.8) 82.8 (1.4) 68.3 (1.6) 57.2 (1.1) 38.5 (1.6) 49.7 (0.4)
GraphSAGE 76.7 (0.6) 64.4 (0.9) 75.5 (0.2) — 57.8 (0.7) 59.9 (0.7) 32.7 (1.0) 41.7 (1.4)
GAT 79.1 (0.8) 68.3 (0.5) 78.4 (0.3) 84.6 (0.5) 67.1 (1.7) 62.4 (0.4) 40.4 (0.9) 49.7 (3.0)

GCN 80.6 (1.4) 69.1 (1.5) 77.6 (1.3) 88.8 (0.5) 84.2 (0.6) 62.8 (0.4) 51.0 (1.2) 58.5 (1.1)
SGC 79.3 (1.0) 66.4 (1.7) 76.8 (2.0) 80.8 (2.7) 81.3 (0.2) 62.9 (2.2) 51.0 (0.1) 56.5 (3.5)
APPNP 78.0 (0.1) 65.8 (0.2) 78.0 (0.0) 88.2 (0.0) 87.7 (0.3) 63.1 (0.5) 57.5 (0.2) 62.3 (1.2)
JKNet 83.1 (0.1) 72.3 (0.1) 80.1 (0.2) 82.3 (0.6) 75.7 (0.1) 62.6 (0.0) 54.0 (0.3) 45.6 (0.5)
DAGNN 81.9 (0.7) 70.0 (1.1) 80.6 (0.7) 87.4 (0.9) 84.6 (1.9) 65.6 (0.3) 54.6 (5.9) 46.7 (12.4)
GNN-LF 81.1 (0.5) 72.3 (0.9) 80.0 (0.4) 90.8 (0.5) 86.7 (0.6) 63.5 (0.9) 56.6 (0.6) 36.6 (19.8)
GNN-HF 80.7 (0.2) 68.8 (1.3) 77.7 (0.2) 91.2 (0.5) 84.5 (0.4) 63.0 (0.7) 60.7 (0.4) 54.8 (1.4)

tsGCN (inv) 80.3 (0.3) 73.3 (0.4) 78.4 (0.3) 85.1 (1.6) 87.8 (6.3) 67.0 (0.9) 53.3 (12.6) 64.2 (1.8)

ACC

tsGCN 82.0 (0.3) 73.1 (0.4) 82.4 (0.1) 92.8 (0.3) 92.3 (0.5) 67.9 (0.9) 79.1 (3.0) 67.9 (0.6)

Chebyshev 76.3 (0.7) 65.4 (0.8) 73.9 (0.7) 82.5 (1.4) 64.3 (1.6) 40.0 (0.5) 38.4 (1.5) 39.1 (0.2)
GraphSAGE 76.7 (0.5) 60.7 (0.5) 74.7 (0.2) — 54.7 (0.6) 51.9 (0.6) 31.0 (1.1) 35.3 (1.0)
GAT 77.1 (0.7) 64.6 (0.5) 78.2 (0.2) 84.8 (0.5) 66.3 (1.9) 46.4 (0.4) 38.1 (1.1) 40.8 (1.3)

GCN 79.4 (1.4) 65.2 (2.4) 77.2 (1.4) 88.9 (0.5) 82.4 (0.5) 52.8 (0.8) 50.0 (1.7) 45.0 (1.1)
SGC 77.7 (0.9) 61.5 (1.7) 76.5 (2.3) 81.1 (2.6) 80.7 (0.3) 53.2 (2.1) 44.2 (0.2) 46.7 (1.7)
APPNP 77.6 (0.1) 63.2 (0.2) 77.7 (0.0) 88.3 (0.0) 85.7 (0.3) 48.2 (0.7) 56.9 (0.2) 48.6 (1.6)
JKNet 82.3 (0.3) 67.8 (0.1) 79.3 (0.3) 82.2 (0.6) 75.0 (0.1) 51.3 (0.1) 51.1 (0.5) 31.7 (1.5)
DAGNN 80.0 (0.7) 65.7 (0.7) 80.7 (0.7) 87.5 (0.9) 83.8 (2.4) 53.0 (0.9) 55.5 (6.7) 39.3 (11.2)
GNN-LF 79.1 (0.7) 66.7 (0.4) 80.2 (0.5) 90.9 (0.5) 85.9 (0.6) 50.5 (1.9) 54.3 (1.0) 29.7 (15.1)
GNN-HF 78.6 (0.3) 64.3 (1.7) 78.1 (0.2) 91.3 (0.5) 83.8 (0.4) 49.0 (1.1) 58.6 (0.6) 44.9 (0.8)

tsGCN (inv) 78.5 (0.3) 69.6 (0.4) 78.7 (0.3) 85.1 (1.5) 85.2 (7.1) 57.2 (1.1) 52.9 (15.8) 48.5 (0.8)

F1

tsGCN 80.5 (0.5) 69.0 (0.3) 82.4 (0.1) 92.8 (0.4) 90.1 (0.6) 58.7 (0.7) 79.3 (2.9) 50.1 (0.1)

Table 3: Accuracies and F1-scores (mean% and standard deviation%) of all methods, where the best results are in bold and the
second-best are underlined. Note that GraphSAGE fails to work on the ACM dataset, and thus its results are marked with “—”.

optimal {W∗,V∗} to αL̃G + βL̃X ≈WV⊤ can be given
by an analytic form of W∗ = V∗ = UΣ

1
2 .

To obtain the optimum {W∗,V∗}, the iterative algorithm
(Sun and Xu 2019) with O(N2) can be leveraged as

Z(t+1) ← (αL̃G + βL̃X)U(t), (17)

{U(t+1),R(t+1)} ← QR(Z(t+1)), (18)
where QR(·) denotes the QR-decomposition. Note that this
algorithm can converge to the r largest eigenvalues R(t+1)

and its corresponding eigenvectors Z(t+1) when t is large
enough, that is W∗ = V∗ = U(t+1)[R(t+1)]

1
2 .

Gathering all analyses mentioned above, the procedure for
tsGCN is summarized in Algorithm 1.

Experiment
Datasets
Cora, Citeseer and Pubmed are citation networks, and Cora-
Full is a larger version of Cora; ACM is a paper network, and
BlogCatalog and Flickr are social networks; UAI has been
utilized for community detection. The detailed statistics of
the above eight public datasets are concluded in Table 2.

Compared Methods
Two types of methods are employed here for comparisons.
Chebyshev (Defferrard, Bresson, and Vandergheynst 2016),
GraphSAGE (Hamilton, Ying, and Leskovec 2017) and GAT
(Velickovic et al. 2018) are classical graph neural networks.
GCN, SGC (Wu et al. 2019), APPNP (Klicpera, Bojchevski,

and Günnemann 2019), JKNet (Xu et al. 2018), DAGNN
(Liu, Gao, and Ji 2020), GNN-LF and GNN-HF (Zhu et al.
2021) are selected as state-of-the-art GCN variants.

Parameter Setups
For all experiments, we randomly split samples into a small
set of 20 labeled samples per class for training, a set of 500
samples for validating and a set of 1, 000 samples for test-
ing. In terms of the ten baseline methods, all their config-
urations are set as the default in their original papers. With
respect to tsGCN, the learning rate, weight decay and the
size of hidden units are set to 1 × 10−2, 5 × 10−4 and 32,
respectively. The hyperparameters α and β are selected in
{0.1, 0.2, . . . , 1.0} for different datasets, and r is chosen in
{⌊ N

211 ⌋, ⌊
N
210 ⌋, . . . , ⌊

N
23 ⌋}, where N is the number of nodes.

Semi-supervised Classification
Performance Comparisons. The semi-supervised classifi-
cation task is conducted on selected datasets, whose results
are recorded in Table 3. Specifically, we compare our tsGCN
with the ten baseline methods in terms of both accuracy and
F1-score, marking the best and second-best results on each
dataset. Note that tsGCN (inv) denotes the variant that di-
rectly calculates the matrix inverse in Eq. (14). From Table
3, we have the following observations:
• tsGCN achieves the best performance on most datasets,

and is only slightly inferior to the JKNet method on the
smallest Cora dataset.

• tsGCN yields higher scores than JKNet and APPNP, es-
pecially on Pubmed, CoraFull, BlogCatalog, and Flickr,

4697

Dataset
(a) Runtime (b) Classification Accuracies

Figure 1: (a) All methods’ runtime on two large datasets. (b) The classification accuracies of tsGCN w.r.t. (α, β) on all datasets.

(a) Cora (b) Citeseer (c) Pubmed (d) ACM

(e) BlogCatalog (f) CoraFull (g) Flickr (h) UAI

Figure 2: The classification accuracies of tsGCN w.r.t. hyperparameters α and β on all datasets.

where the first two are relatively large datasets and the
latter two have dense edges. tsGCN even outperforms the
second-best approach GNN-HF by about 20% on Flickr.

It is worth mentioning that tsGCN utilizes global informa-
tion by the infinite-order graph convolution, and JKNet and
APPNP also develop different techniques for the same goal.
Hence, the advantage of tsGCN over APPNP and JKNet im-
plies that the infinite-order graph convolution implemented
by low-rank approximations not only requires less compu-
tational complexity, but also effectively captures high-order
neighborhood information and filters significant noises.

Runtime Comparisons. This section collects the train-
ing time (i.e., runtime) of all methods on two large datasets,
i.e., Pubmed and CoraFull, as exhibited in Fig. 1(a): the first
three columns correspond to classical GNNs, while the rest
are GCNs. Fig. 1(a) shows that tsGCN takes much less run-

time than Chebyshev, GAT, and GraphSAGE but performs
moderately well among the state-of-the-art GCNs. Specifi-
cally, tsGCN is (1) inferior to SGC, JKNet, and DAGNN;
(2) well-matched with the original GCN; (3) but advanta-
geous over the recently proposed GNN-LF and GNN-HF.

Parameter Sensitivity Analysis
Fig. 1(b) curves the accuracies of tsGCN w.r.t. various ranks
by fixing other parameters α and β. Considering that differ-
ent datasets hold different distributions, their optimal ranks
to the optimization (16) are also different. For example, in
regard to the curves on BlogCatalog and ACM, their accura-
cies first go up to a high value and then keep steady, which
indicates that when rank r = ⌊N/512⌋, the low-rank ap-
proximation is effective and efficient enough. When it comes
to the curve on Pubmed, the trend of its performance mono-
tonically decreases as rank r becomes bigger, which implies

4698

A
cc

ur
ac

y
(%

)

F1
-s

co
re

 (%
)

Figure 3: Accuracies and F1-scores of tsGCN and its variants on all datasets. Note that tsGCN-s and tsGCN-t are with only
semantic and topological regularizer, respectively.

(a) Chebyshev (b) GraphSAGE (c) GAT (d) GCN (e) SGC (f) APPNP

(g) JKNet (h) DAGNN (i) GNN-LF (j) GNN-HF (k) tsGCN (inv) (l) tsGCN

Figure 4: Different methods’ t-SNE visualizations on BlogCatalog, where each color corresponds to one class.

that a very low-rank (i.e., r = ⌊N/2048⌋) approximation is
sufficient enough to preserve abundant information for good
results. However, with respect to the other curves such as on
Flickr and Cora, the y-axis’ scores generally rise to a peak
first and then fall continuously as the rank r increases. For
these cases, the optimal ranks differ at their peaks.

Fig. 2 plots the accuracies of tsGCN w.r.t. (α, β) by fix-
ing the optimal ranks. On Cora, Pubmed, BlogCatalog, and
CoraFull, tsGCN performs well with large α and small β;
while, on Citeseer, ACM, Flickr, and UAI, tsGCN generates
high accuracy when these two parameters are both large.

Ablation Study
The results of GCN, tsGCN-s, tsGCN-t, tsGCN (inv), and
tsGCN are plotted in Fig. 3, telling us:

• The performance is unsatisfactory when the two regular-
izers are adopted alone, while tsGCN can always effec-
tively fuse the two to better capture underlying structures.

• tsGCN (inv) is even worse than single-regularizer model
on some datasets, indicating that the infinite-order graph
convolutions implemented by the matrix inverse can pull-
in instability to the model.

• Compared to GCN, tsGCN (inv) performs worse whereas
tsGCN shows substantial improvements on all datasets,
indicating that the low-rank approximation enhances the
robustness of infinite-order graph convolutions.

Data Visualization
Fig. 4 exhibits the graph representations learned by different
methods on BlogCatalog. As can be seen clearly, the results
of the three classical graph neural networks, i.e., Chebyshev,

GraphSAGE and GAT, are unsatisfactory; while for the other
competitors, there are:

• Both tsGCN (inv) and tsGCN are better than other GCNs,
which indicates that the dual-regularizer can extract more
accurate inter-relationships from the topological and se-
mantic structures.

• Comparing the embeddings learned by tsGCN and ts-
GCN (inv), classes are more clearly recognized and the
within-clusters are more compact with tsGCN, which tes-
tifies the effectiveness of low-rank approximation.

In a nutshell, the embeddings of the proposed model show
the best inter-class separation and intra-class aggregation.

Conclusion
By revisiting GCN, this paper puts forward an interpretable
regularizer-centered optimization framework, in which the
connections between existing GCNs and diverse regularizers
are revealed. It is worth mentioning that this framework pro-
vides a new perspective to interpret existing work and guide
new GCNs just by designing new graph regularizers. Im-
pressed by the significant effectiveness of the feature based
semantic graph, we further combine it with nodes’ topolog-
ical structures, and develop a novel dual-regularizer graph
convolutional network, called tsGCN. Since the analytical
updating rule of tsGCN contains a time-consuming matrix
inverse, we devise an efficient algorithm with low-rank ap-
proximation tricks. Experiments on node classification tasks
demonstrate that tsGCN performs much better than quite a
few state-of-the-art competitors, and also exhibit that tsGCN
runs much faster than the very recently proposed GCN vari-
ants, e.g., GNN-HF and GNN-LF.

4699

Acknowledgments
This work is in part supported by National Natural Science
Foundation of China (Grant No. U21A20472, 62276065,
and 62006005), and Natural Science Foundation of Fujian
Province (Grant No. 2020J01130193).

References
Amos, B. 2019. Differentiable Optimization-Based Model-
ing for Machine Learning. Ph.D. thesis, Carnegie Mellon
University.
Bo, D.; Wang, X.; Shi, C.; and Shen, H. 2021. Beyond Low-
frequency Information in Graph Convolutional Networks. In
AAAI, 3950–3957.
Chen, H.; Yin, H.; Sun, X.; Chen, T.; Gabrys, B.; and Mu-
sial, K. 2020a. Multi-level Graph Convolutional Networks
for Cross-platform Anchor Link Prediction. In KDD, 1503–
1511.
Chen, W.; Chen, L.; Xie, Y.; Cao, W.; Gao, Y.; and Feng,
X. 2020b. Multi-Range Attentive Bicomponent Graph Con-
volutional Network for Traffic Forecasting. In AAAI, 3529–
3536.
Chen, Y.; Huang, L.; Wang, C.; and Lai, J. 2022. Hybrid-
Order Gated Graph Neural Network for Session-Based Rec-
ommendation. IEEE Transactions on Industrial Informatics,
18(3): 1458–1467.
Chen, Z.; Fu, L.; Yao, J.; Guo, W.; Plant, C.; and Wang,
S. 2023. Learnable graph convolutional network and fea-
ture fusion for multi-view learning. Information Fusion, 95:
109–119.
Chen, Z.; Wei, X.; Wang, P.; and Guo, Y. 2019. Multi-Label
Image Recognition With Graph Convolutional Networks. In
CVPR, 5177–5186.
Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. In NeurIPS, 1–9.
Fan, S.; Wang, X.; Shi, C.; Lu, E.; Lin, K.; and Wang, B.
2020. One2Multi Graph Autoencoder for Multi-view Graph
Clustering. In WWW, 3070–3076.
Halliwell, N. 2022. Evaluating Explanations of Relational
Graph Convolutional Network Link Predictions on Knowl-
edge Graphs. In AAAI, 12880–12881.
Hamilton, W. L.; Ying, Z.; and Leskovec, J. 2017. Induc-
tive Representation Learning on Large Graphs. In NeurIPS,
1024–1034.
Hammond, D. K.; Vandergheynst, P.; and Gribonval, R.
2011. Wavelets on Graphs via Spectral Graph Theory. Ap-
plied and Computational Harmonic Analysis, 30: 129–150.
Hu, H.; Cheng, L.; Vap, J. P.; and Borowczak, M. 2022.
Learning Privacy-Preserving Graph Convolutional Network
with Partially Observed Sensitive Attributes. In WWW,
3552–3561.
Kipf, T. N.; and Welling, M. 2017. Semi-supervised Classifi-
cation with Graph Convolutional Networks. In ICLR, 1–13.
Klicpera, J.; Bojchevski, A.; and Günnemann, S. 2019. Pre-
dict then Propagate: Graph Neural Networks meet Personal-
ized PageRank. In ICLR, 1–15.

Li, Q.; Han, Z.; and Wu, X. 2018. Deeper Insights Into
Graph Convolutional Networks for Semi-Supervised Learn-
ing. In AAAI, 3538–3545.
Liu, M.; Gao, H.; and Ji, S. 2020. Towards Deeper Graph
Neural Networks. In KDD, 338–348.
Nie, W.; Zhao, Y.; Liu, A.; Gao, Z.; and Su, Y. 2020. Multi-
graph Convolutional Network for Unsupervised 3D Shape
Retrieval. In MM, 3395–3403.
Oono, K.; and Suzuki, T. 2020. Graph Neural Networks Ex-
ponentially Lose Expressive Power for Node Classification.
In ICLR, 1–8.
Sun, J.; and Xu, Z. 2019. Neural Diffusion Distance for
Image Segmentation. In NeurIPS, 1441–1451.
Sun, K.; Zhu, Z.; and Lin, Z. 2021. AdaGCN: Adaboosting
Graph Convolutional Networks into Deep Models. In ICLR,
1–15.
Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
P.; and Bengio, Y. 2018. Graph Attention Networks. In
ICLR, 1–12.
Wang, X.; Zhu, M.; Bo, D.; Cui, P.; Shi, C.; and Pei, J. 2020.
Am-gcn: Adaptive multi-channel graph convolutional net-
works. In KDD, 1243–1253.
Wang, Y.; Cao, M.; Fan, Z.; and Peng, S. 2022. Learning to
Detect 3D Facial Landmarks via Heatmap Regression with
Graph Convolutional Network. In AAAI, 2595–2603.
Wu, F.; Jr., A. H. S.; Zhang, T.; Fifty, C.; Yu, T.; and Wein-
berger, K. Q. 2019. Simplifying Graph Convolutional Net-
works. In ICML, 6861–6871.
Wu, Z.; Shu, L.; Xu, Z.; Chang, Y.; Chen, C.; and Zheng,
Z. 2022. Robust Tensor Graph Convolutional Networks via
T-SVD Based Graph Augmentation. In KDD, 2090–2099.
Xu, F.; Lian, J.; Han, Z.; Li, Y.; Xu, Y.; and Xie, X. 2019.
Relation-Aware Graph Convolutional Networks for Agent-
Initiated Social E-Commerce Recommendation. In CIKM,
529–538.
Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; ichi Kawarabayashi, K.;
and Jegelka, S. 2018. Representation Learning on Graphs
with Jumping Knowledge Networks. In ICML, 5449–5458.
Yang, L.; Kang, Z.; Cao, X.; Jin, D.; Yang, B.; and Guo, Y.
2019. Topology Optimization based Graph Convolutional
Network. In AAAI, 4054–4061.
Yang, M.; Shen, Y.; Li, R.; Qi, H.; Zhang, Q.; and Yin, B.
2022. A New Perspective on the Effects of Spectrum in
Graph Neural Networks. In ICML, 25261–25279.
Yang, Y.; Liu, T.; Wang, Y.; Zhou, J.; Gan, Q.; Wei, Z.;
Zhang, Z.; Huang, Z.; and Wipf, D. 2021. Graph Neural Net-
works Inspired by Classical Iterative Algorithms. In ICML,
11773–11783.
Yu, B.; Yin, H.; and Zhu, Z. 2018. Spatio-Temporal Graph
Convolutional Networks: A Deep Learning Framework for
Traffic Forecasting. In IJCAI, 3634–3640.
Zhang, Y.; Pal, S.; Coates, M.; and Üstebay, D. 2019.
Bayesian Graph Convolutional Neural Networks for Semi-
Supervised Classification. In AAAI, 5829–5836.

4700

Zhang, Z.; Chen, C.; Chang, Y.; Hu, W.; Xing, X.; Zhou, Y.;
and Zheng, Z. 2021. SHNE: Semantics and Homophily Pre-
serving Network Embedding. IEEE Transactions on Neural
Networks and Learning Systems, 1–12.
Zhao, L.; and Akoglu, L. 2020. Connecting Graph Con-
volutional Networks and Graph-Regularized PCA. arXiv
preprint arXiv:2006.12294.
Zhu, H.; and Koniusz, P. 2021. Simple Spectral Graph Con-
volution. In ICLR, 1–11.
Zhu, M.; Wang, X.; Shi, C.; Ji, H.; and Cui, P. 2021. Inter-
preting and Unifying Graph Neural Networks with An Opti-
mization Framework. In WWW, 1215–1226.

4701

